

Whitestein Series in Software Agent Technologies and Autonomic Computing

Series Editors:
Marius Walliser
Stefan Brantschen
Monique Calisti
Stefan Schinkinger

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in
the area of autonomic computing and communications.

The spectrum of the series includes research monographs, high quality notes resulting
from research and industrial projects, outstanding Ph.D. theses, and the proceedings of
carefully selected conferences. The series is targeted at promoting advanced research and
facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies is a leading innovator in the area of software agent technologies
and autonomic computing and communications. Whitestein Technologies‘ offering includes
advanced products, solutions, and services for various applications and industries, as well
as a comprehensive middleware for the development and operation of autonomous, self-
managing, and self-organizing systems and networks.
Whitestein Technologies‘ customers and partners include innovative global enterprises,
service providers, and system integrators, as well as universities, technology labs, and
other research institutions.

www.whitestein.com

Emerging Web Services
Technology

Cesare Pautasso
Christoph Bussler
Editors

Birkhäuser
Basel · Boston · Berlin

Bibliographic information published by Die Deutsche Bibliothek

detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

storage in data banks. For any kind of use permission of the copyright owner must be
obtained.

Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF

Editors:

Cesare Pautasso Christoph Bussler

Switzerland chris.bussler@oracle.com
c.pautasso@ieee.org

Contents

Preface vii

Organization ix

Introduction xi

I. Opening Keynote

Jürgen Angele
Ontoprise: Semantic Web Technologies at Business 1

II. Service Management

Thilina Gunarathne, Dinesh Premalal, Tharanga Wijethilake, Indika Kumara
and Anushka Kumar
BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 3

Nicolas Repp, Rainer Berbner, Oliver Heckmann and Ralf Steinmetz
A Cross-Layer Approach to Performance Monitoring of Web Services 21

Halina Kaminski and Mark Perry
Employing Intelligent Agents to Automate SLA Creation 33

Christian Schröpfer, Marten Schönherr, Philipp Offermann
and Maximilian Ahrens
A Flexible Approach to Service Management-Related Service Description
in SOAs 47

III. Model Driven Engineering for Web Service Composition and Discovery

Ricardo Quintero, Victoria Torres and Vicente Pelechano
Model Centric Approach of Web Services Composition 65

vi Contents

Marta Ruiz and Vicente Pelechano
Model Driven Design of Web Service Operations using Web Engineering
Practices 83

Adina Ŝırbu, Ioan Toma and Dumitru Roman
A Logic-based Approach for Service Discovery with Composition Support 101

IV. Mobile Services

Elena Sánchez-Nielsen, Sandra Mart́ın-Ruiz and Jorge Rodŕıguez-Pedrianes
Mobile and Dynamic Web Services 117

Pablo Rossi and Zahir Tari
Software Metrics for the Efficient Execution of Mobile Services 135

V. Web Service Technology Challenges

Mehdi Ben Hmida, Céline Boutrous Saab, Serge Haddad, Valérie Monfort
and Ricardo Tomaz Ferraz
Dynamically Adapting Clients to Web Services Changing 153

Tosca Lahiri and Mark Woodman
Web Service Standards: Do we need them? 167

Author Index 183

Preface

The Workshop on Emerging Web Services Technology (WEWST06) took place in
conjunction with the 4th European Conference on Web Services (ECOWS’06) on
4th December 2006, in Zurich, Switzerland.

Acting as the natural extension to the main ECOWS conference, the main
goal of the WEWST workshop is serving as a forum for providing early exposure
and much needed feedback to grow and establish original and emerging ideas within
the Web Services community. The wide variety of tools, novel techniques and
emerging technological solutions presented in WEWST share one common feature:
they advance the current Web services research in new directions by introducing
new and sometimes controversial ideas into the field.

WEWST focuses on research contributions advancing the state of the art in
Web services technologies in the following areas: Model Driven Engineering for
SOA, Mobility and Services, Streaming Services and Event Driven Architectures,
Dynamic Web Service Discovery and Composition, Lightweight Orchestration En-
gines, SLA Creation and Service Delivery, Semantic Web, Managing Change and
Service Evolution, Business Driven Development, Service-Oriented Grid Comput-
ing Middleware, Business Process Management for Web Services, Software and
Service Engineering. WEWST covers the whole spectrum which makes it a very
important part of ECOWS.

We would like to thank the authors of the papers for their submissions and
for their contribution to the timely preparation of these proceedings, as well as
for their high quality presentations and lively discussions during the workshop. In
particular, we would like to thank Jürgen Angele for accepting to present a well
received keynote on the topic: ’Ontoprise: Semantic Web Technologies at Business’
showcasing a very important example of an emerging Web services technology. We
would also like to thank Monique Calisti and Whitestein Technologies AG, for the
invaluable support in finding a suitable venue for publishing the workshop proceed-
ings and Stefan Schinkinger from Birkhauser Publishing Ltd. for fast tracking the
WEWST proceedings through the publication process. And, last but not least, we
would like to thank the ECOWS conference organizers (Thomas Gschwind, Abra-
ham Bernstein, and Wolf Zimmermann) for their trust and availability to make
this workshop a success.

Cesare Pautasso, Christoph Bussler
Program Chairs WEWST06

Rüschlikon - San Jose
April 2007

Organization

Program Chairs

Cesare Pautasso, IBM Research, Switzerland
Christoph Bussler, BEA Systems, San Francisco, USA

Program Committee

Farhad Arbab, CWI, The Netherlands
Luciano Baresi, Politecnico di Milano, Italy
Steven Battle, Hewlett-Packard Labs
Boualem Benatallah, University of New South Wales, Australia
Abraham Bernstein, University of Zurich, Switzerland
Walter Binder, EPFL, Switzerland
David Breitgand, IBM Research, Israel
Geoffrey Coulson, Lancaster University, UK
Theo Dimitrakos, BT, UK
Jürgen Dunkel, FH Hannover, Germany
Schahram Dustdar, TU Wien, Austria
David Eyers, University of Cambridge, UK
Dieter Fensel, University of Innsbruck and DERI, Austria
Ioannis Fikouras, Ericsson, Germany
Bogdan Franczyk, Leipzig University, Germany
Christian Geuer-Pollmann, Microsoft, Germany
Chris Giblin, IBM Zurich Research Lab, Switzerland
Paul Grefen, Eindhoven University of Technology, The Netherlands
John Grundy, University of Auckland, New Zealand
Thomas Gschwind, IBM Zurich Research Lab, Switzerland
Manfred Hauswirth, Digital Enterprise Research Institute, Galway
Reiko Heckel, University of Leicester, UK
Martin Henkel, Stockholm University, Sweden
Alexander Keller, IBM Research, USA
Christoph Kiefer, Universität Zürich, Switzerland
Nik Klever, University of Applied Sciences, Germany
Birgitta Koenig-Ries, University of Jena, Germany
Ernö Kovacs, NEC Europe Network Labs, Germany
Jochen Küster, IBM Research, Switzerland
Frank Leymann, University of Stuttgart, Germany
Welf Löwe, Växjö Universitet, Sweden
Ronald Maier, Universität Halle, Germany
Ingo Melzer, DaimlerChrysler Research, Germany
Jean-Philippe Martin-Flatin, NetExpert, Switzerland
Rainer Neumann, PTV, Germany

x Organization

Roy Oberhauser, Aalen University of Applied Sciences, Germany
Johann Oberleitner, Technical University Vienna, Austria
Claus Pahl, Dublin City University, Ireland
Massimo Paolucci, DoCoMo Labs Europe, Germany
Bijan Parisa, University of Maryland
Gerald Reif, Universität Zürich, Switzerland
Barbara Pernici, Politecnico di Milano, Italy
Wolfgang Reisig, Humboldt Universität Berlin, Germany
Akhil Sahai, HP Labs, USA
Ulf Schreier, University of Applied Sciences Furtwangen, Germany
York Sure, Universität Karlsruhe, Germany
Rainer Unland, University of Duisburg-Essen, Germany
Wim Vanderperren, Vrije Universiteit Brussel, Belgium
Aad van Moorsel, University of Newcastle, UK
Do van Thanh, NTNU and Telenor, Norway
Jim Webber, ThoughtWorks, Australia
Andreas Wombacher, University of Twente, The Netherlands
Gianluigi Zavattaro, University of Bologna, Italy
Jia Zhang, Northern Illinois University, USA
Liang-Jie Zhang, IBM Research, USA
Olaf Zimmermann, IBM Research, Switzerland

Introduction

No single event could completely capture the current flurry of research and de-
velopment activities related to Service Oriented Architecture and Web Services.
These proceedings of the first Workshop of Emerging Web Services Technology
2006 attempt to gather outstanding research achievements cutting across a wide,
but representative set of emerging technologies: semantic Web services, service
management, model-driven engineering for service composition and discovery, mo-
bile services, and challenges such as change management and successful standard-
ization. Accordingly, the proceedings have been organized into five different parts,
one for each topic of the workshop contributions.

Part I opens the proceedings with the keynote given by Jürgen Angele, dis-
cussing the challenges that emerging semantic Web technologies are facing during
their transition from academic prototypes into industrial products.

Part II covers several aspects of service management. It begins with a paper
by Thilina Gunarathne, Dinesh Premalal, Tharanga Wijethilake, Indika Kumara
and Anushka Kumar presenting a lightweight approach to the design of service
composition engines. Whereas most existing BPEL (Business Process Execution
Language) engines are complex platforms with heavy weight deployment require-
ments, the authors have shown how to radically simplify such an engine so that
it becomes embeddable, delivers better performance and becomes much easier to
manage. Performance optimization in service delivery is also the topic of the second
paper, by Nicolas Repp, Rainer Berbner, Oliver Heckmann and Ralf Steinmetz.
This position paper advocates a holistic approach to Web service performance
monitoring. The authors show how to diagnose performance problems by taking
a snapshot of key indicators across the entire communication stack so that more
detailed information can be fed, e.g., into the planning component of a service
orchestration engine. Service Level Agreements (SLAs) are also a very important
aspect of Service Management. In the third paper, Halina Kaminski and Mark
Perry propose to use intelligent agents to automatically create such agreements.
As an alternative between the reuse of fixed boilerplate agreements and the costly
manual negotiation of customized SLAs, the authors propose to automatically
create SLAs using agent-based negotiation starting from a set of Service Level
Objectives. Giving a good definition to Quality of Service is of paramount im-
portance for properly managing Web services in production. Christian Schröpfer,
Marten Schönherr, Philipp Offermann and Maximilian Ahrens attack the problem
of defining non-functional properties for semantic Web services. In their paper,
OWL-S (the Web Ontology Language for Services) is extended to support model-
ing of service lifecycle information and Quality of Service guarantees.

Part III is devoted to model-driven engineering applied to service compo-
sition and discovery. With the goal of raising the level of abstraction of current
languages and tools, the first paper by Ricardo Quintero, Victoria Torres and

xii Introduction

Vicente Pelechano argues that both structural (static) and behavioral (dynamic)
aspects need to be combined. In particular, the paper extends the Object-Oriented
Web Solutions methodology to drive the generation of BPEL code from high level
conceptual models. The same methodology is also extended in the second paper,
where Marta Ruiz and Vicente Pelechano deal with the design of Web service
interfaces. The authors present a comprehensive solution to obtain well-designed
Web services. Taking into account the requirements of model-driven service com-
position, the third paper is about service discovery, also a fundamental challenge
of Service Oriented Architectures. In this paper, Adina Ŝırbu, Ioan Toma and Du-
mitru Roman present a logic-based, formal discovery model based on capability
matching that is meant to be integrated with service composition.

Part IV focuses on services and mobility. The first paper by Elena Sánchez-
Nielsen, Sandra Mart́ın-Ruiz and Jorge Rodŕıguez-Pedrianes addresses the prob-
lem of consuming Web services from resource-limited, mobile client devices. The
authors present and evaluate the design of a concrete prototype based on dynamic
proxies. The second paper introduces a set of software metrics for observing mobile
service-oriented systems and effectively measuring their runtime efficiency. The au-
thors (Pablo Rossi and Zahir Tari) show how such metrics can be used to perform
service migration decisions.

Part V concludes the proceedings with two different technology challenges.
The first is about dealing with changes of Web service interfaces through dynamic
client adaptation. In this context, Mehdi Ben Hmida, Céline Boutrous Saab, Serge
Haddad, Valérie Monfort and Ricardo Tomaz Ferraz apply Aspect Oriented Pro-
gramming techiques to modify BPEL service compositions at run-time. The second
challenge is related to current Web service standardization trends. The paper of
Tosca Lahiri and Mark Woodman takes a critical look at the progress and the
quality of current Web service standardization efforts.

Whitestein Series in Software Agent Technologies, 1–2
c© 2007 Birkhäuser Verlag Basel/Switzerland

Ontoprise:
Semantic Web Technologies at Business

Jürgen Angele

In former days Tim Berners-Lee proposed a soon breakthrough of the Seman-
tic Web. As a breakthrough he considered every second web page to be connected
to an ontology. In the mean time we have seen a lot of applications of semantic
technologies, like semantic web services, semantic information integration, and on-
tology based search for documents. However it seems also clear that the forecast
of TBL did not (yet) arrive. While in the last years there has always been great
academic interest in Semantic Web and in semantic technologies and even first
industrial products appeared, we did not see the industrial breakthrough of Se-
mantic Web technologies. On the other hand there was a strong increasing interest
in other trends like SOA architectures, Web 2.0 etc. which ruled out Semantic Web
in publicity and in connected activities like new product developments, founda-
tions of new companies, and money involved. The question arises what are the
reasons for that and which of these newer trends could have an influence on the
further development of semantic technologies. While so far the Semantic Web was
driven to a large extent from the academic side, its future acceptance and rele-
vance to the industrial world heavily depends on whether the future development
of Semantic Web technologies is influenced by industry needs rather than pure
academic ones. This becomes essential and will decide whether semantic technolo-
gies are considered as relevant technology and will be used in future industrial
applications and products. In actual industry applications, it was proved that the
combination of trendy topics like SOA and Web 2.0 with intelligent features of
semantic technologies generates large impact for the industrial and business world
and thereof - the breakthrough of the Corporate Semantic Web. The keynote il-
lustrated present work, proposals and requirements which will lead us to the next
wave of semantic technology impact.

Prof. Dr. Jürgen Angele is currently CEO, CTO and shareholder of Ontoprise
GmbH, a provider of semantic technologies. Ontoprise has been co-founded by him
in 1999. In 1994 he became a full professor in applied computer science at the Uni-
versity of Applied Sciences, Braunschweig, Germany. From 1989 to 1994 he was a

2 Jürgen Angele

research and teaching assistant at the University of Karlsruhe, Institute AIFB. He
did research on the execution of the knowledge acquisition and representation lan-
guage KARL, which led to a Ph.D. (Dr. rer. pol.) from the University of Karlsruhe
in 1993. From 1985 to 1989 he worked for the companies AEG, Konstanz, Germany,
and SEMA GROUP, Ulm, Germany. He received the diploma degree in computer
science in 1985 from the University of Karlsruhe. He published around 90 papers
as books and journal, book, conference, and workshop contributions. Topics were
about semantic web, semantic technologies, knowledge representation, and their
practical applications. He is leading several research and commercial projects. He
gave more than 55 courses at Berufsakademien, Fachhochschulen and Universi-
ties. Topics were about: Expert Systems, Software Engineering, World Wide Web,
Database Systems, Digital Image Analysis, Computer Graphics, Mathematics. He
supervised around 30 master and Ph.D. theses.

Jürgen Angele
ontoprise GmbH
Amalienbadstr. 36
D-76227 Karlsruhe
e-mail: angele@ontoprise.de

Whitestein Series in Software Agent Technologies, 3–20
c© 2007 Birkhäuser Verlag Basel/Switzerland

BPEL-Mora: Lightweight Embeddable
Extensible BPEL Engine

Thilina Gunarathne, Dinesh Premalal, Tharanga Wijethilake,
Indika Kumara, Anushka Kumar

Abstract. Web Services have become the de-facto standard for architect-
ing and implementing business collaborations within and across organization
boundaries. Web service composition refers to the creation of new (Web) ser-
vices by combining the functionalities provided by existing ones. A process-
oriented language for service composition has been proposed as BPEL4WS.
BPEL4WS specification defines an XML based formal language and provides
a general overview of the framework. However no design and implementation
issues are described in it. Most of the available BPEL4WS compliant process
engines are heavy weight, complex and not extensible. This paper describes
the design and implementation of an embeddable, scalable and extensible
BPEL4WS compliant process engine. This paper highlights the concepts and
strategies that were followed during the design and implementation. Primary
contribution of this paper is the design of stateless process model and the
design of run time core engine using a multi-processor scheduler.

Keywords. Web service composition, lightweight, BPEL4WS, Axis2.

1. Introduction

Service Oriented Architecture (SOA) together with web services have become the
de-facto standard for architecting and implementing business collaborations within
and across organization boundaries. SOA takes a “software as a service” approach
by exposing the functionality of software components as services. These isolated
and opaque service components need to be able to collaborate in order to realize
more complex functionality. There exist several web service based workflow models
such as Business Processing Execution Language for Web Services (BPEL4WS)
[1] in order to cater the above requirement.

4 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

BPEL4WS is an XML based language that is intended to facilitate the build-
ing of more portable business processes based on Web Service Description Lan-
guage (WSDL)[2]. BPEL4WS defines how multiple services can be composed to-
gether to create new services by combining the functionalities provided by those
existing services in a coordinated way. Architecture of a workflow based appli-
cation typically consists of two programming model abstraction layers denoted
by the process model and the individual components. Web services architecture
naturally provides the component layer abstraction while BPEL4WS provides the
process model. Almost all the available BPEL4WS compliant process engines are
found to be complex and heavy weigh, while very few are extensible. Objective
of BPEL-Mora was to design and implement a lightweight embeddable, extensible
BPEL4WS compliant engine. BPEL-Mora engine was designed to facilitate service
composition, service orchestration, non service orchestrations as well as execution
of client side workflows based on BPEL4WS model. BPEL-Mora engine is designed
to be embeddable in Apache Axis2 [3].

BPEL-Mora consists of four major modules. (1) Process Model (2) Kernel (3)
Information model (4) Web service layer. Process Model is used to represent the
business process inside the engine. Process model tree for a business process can be
created either programmatically or by deploying a BPEL4WS document. In order
to maintain low memory foot prints we separated out the process model (Meta
data about process) and run time state data of process instances. An Information
model consisting of a context hierarchy was introduced to store the run time state
data of the process instances. Scalability of the engine was achieved by introducing
a kernel based on a multi processor, single queue, non pre-emptive, priority based
scheduler to execute the activities given in a process model. BPEL-Mora kernel was
designed to minimize the resource requirement per process instance by avoiding
thread proliferation. BPEL-Mora empowers user with the ability to write and
add custom activities to the engine. This can be achieved very easily by using
the provided abstract classes for activities and complex activities. BPEL-Mora
is integrated with the Apache Axis2 web services engines through an abstraction
layer. Each and every process in BPEL-Mora is registered and exposed as a service
through the web services engine. An interface similar to that of WSIF [4] is used
for dynamic invocations based on WSDL bindings, with plans to migrate to WSIF
later.

The rest of the paper is structured as follows. Section 2 and 3 review the
background and related work for the subject of this paper. Section 4 motivates
and defines our new approach. Section 5 and 6 present the information and pro-
cess model of BPEL-mora. Section 7 introduces the design of the BPEL-Mora
kernel and Section 8 discusses its architecture more in depth with respect to the
four major architectural modules. Sections 9 and 10 conclude the discussion with
evaluation, conclusion and future work.

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 5

2. Background

2.1. BPEL4WS

The Business Processing Execution Language for Web services (BPEL4WS or
BPEL for short) is a Turing complete XML based programming language that is
intended to build more portable business processes based on WSDL. BPEL was
created by merging two existing workflow languages, Microsoft’s XLANG[5] and
IBM’s WSFL (Web Services Flow Language)[6]. Architecture of workflow based
applications typically consists of two layers of programming model abstractions
denoted by the process model (also called orchestration layer) and by the individ-
ual components. Web services architecture natively provides an abstraction layer
which separates out the implementations from the service definitions. This abstrac-
tion can be considered as the component layer of the workflow based applications.
BPEL fits to the web services architecture as the orchestration layer or the process
model for web services. BPEL was originally created by BEA, IBM, and Microsoft.
Now it is undergoing standardization process at the OASIS consortium.

BPEL can be used to define two kinds of processes, namely executable pro-
cesses and abstract processes. Abstract process is a protocol which specifies mes-
sage exchange between different parties without revealing the internal behavior of
them. Executable process specifies execution order of number of activities.

The building block or each element of a process is known as an activity.
An activity can either be a primitive activity or a structured activity. Examples
for primitive activities defined in BPEL are Invoke, Receive, Wait, Assign, etc.
Structured activities are defined in BPEL in order to enable the presentation of
complex structures by composing the primitive activities. Sequence, Switch, While,
Flow are examples for structured activities.

2.2. Apache Axis2

Apache Axis2 [3] is a complete re-design and a re-write of the widely used Apache
Axis SOAP stack. Apache Axis2 is more efficient, more modular and more XML-
oriented than the older version. Apache Axis2 is compliant with most of the new
versions of core web services specifications and provides WS-* support through its
sub projects.

Apache Axis2 supports SOAP 1.1 [7] and SOAP 1.2 [8] and has integrated
support for the REST style of Web services too. Hence, the same business logic
implementation can offer both a WS-* style interface as well as a REST style
interface simultaneously. Axis2 engine is based on a one way message processing
model where the engine either perform send or receive functions with respect to a
particular SOAP message. Apache Axis2 has the ability to support any Message
Exchange Pattern. Axis2 has complete asynchronous messaging support ranging
from API level asynchronous support to transport level asynchronous support.

Apache Axis2 is built on Apache Axiom, a new high performing, pull-based
XML object model, which provides a simple API for SOAP and XML info-set.
Axis2 engine contains a context hierarchy accessible to all services and handlers.

6 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

All the run time state data are kept in this information model. Apache Axis2
further improves the popular handler architecture introduced by Axis 1.x by adding
the concept of phases. In addition Axis2 introduces a concept called Message
Receiver [9] which represent a service inside Axis2 and designated as the ultimate
recipient of a particular SOAP message from the architecture point of view of the
Axis2 engine.

Apache Axis2 is carefully designed to support the easy addition of plug-in
”modules” that extend its functionality for features such as security and reliability.
Apache Axis2 has a more improved versatile deployment model with support for
hot deployment. This deployment model introduces a service archive format and
a module archive format for easy deployment of services and modules.

3. Related Work

In this section we look at some of the other commercial and open source BPEL
implementations along with some research literature.

The ActiveBPEL [10] engine is a widely used open source BPEL engine. It
is designed to be deployed as a servlet in a standard servlet container such as
Apache Tomcat. Apache Axis1.x [11] Web service engine is embedded internally
in ActiveBPEL. ActiveBPEL is designed around the visitor pattern [12]. Active
BPEL does not claim to provide a way to add custom activities in addition to
BPEL activities.

An interesting study about the scalability of ActiveBPEL engine has been
presented earlier [13]. According to that ActiveBPEL engine requires two OS
threads for the creation of a new BPEL process instance. This shows that when
the number of process instances increases in ActiveBPEL, the number of threads
may go well beyond what most systems can handle, eventually making the work-
flow to be aborted. Also users may run into deadlocks if they try to limit the size
of the thread pool of the servlet container [13]. The above study concludes by de-
ciding that the scalability of ActiveBPEL is limited only by the limited hardware
resources, which will not be acceptable for an embeddable engine.

PXE is another open source BPEL engine. It has many features such as mi-
crokernel architecture, pluggable persistency module, JMX-based administration,
etc. [15].

IBM WebSphere Process Server (Version 6 as of 2006) is a proprietary BPEL
engine running on top of the WebSphere Application Server. WebSphere Process
Server is a part of huge software with a wide range of functionality. WebSphere
Process Server needs a minimum 1.3 GB (1350 MB) available disk space for in-
stallation, installer also requires approximately 600 MB of temporary space during
installation and minimum 1 GB physical memory in Linux or Windows platforms
[14] as the minimal system requirement.

There are many other open source and proprietary products like Microsoft
BizTalk, Oracle’s Business Process Manager, etc. which support BPEL.

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 7

4. Motivation and Our Approach

People tend to think about BPEL complaint business process engines as heavy
weight, complex, resource hungry, expensive server side components which are
meant to be used by high profile users. On par with the above mind set, almost
all the available BPEL engines are found to be complex and heavy weight. But
when having a closer look at most existing BPEL engines, we can see that most
of them are tightly coupled with business process design modules and business
process management modules making them heavy weight and complex. Some of
them were built on top of older workflow models making it much worse.

In our opinion the above perception conceal some of the interesting use cases
in which BPEL can be used. These use cases can range from service-enabling a
device by embedding a BPEL compatible engine to running client side business
processes along with custom activities. Our effort is to design and implement a
lightweight, embeddable, easy to use BPEL compliant engine as oppose to the
above perception. Almost all the existing implementations embed web service en-
gines inside the BPEL engine. As oppose to that we thought of developing a
BPEL-Mora as a plug-in to an existing web service engine. Following are some of
the use cases for such an engine.

Let’s consider a simple BPEL use case where a user wants to expose a new
web service by combining the functionalities provided by couple of simple web
services in a coordinated way. With the currently available tools the user needs to
have a bulky BPEL compliant engine installed in his server for this requirement.
Our objective is to provide a simple yet powerful BPEL compliant engine as an
add-on to a web service engine. Then the user will be able to perform his service
composition inside his web service engine with the same simplicity and ease of
deploying a web service, with no extra cost or effort. Also if we consider a scenario
where a user needs to invoke several web services, then depending on the result
he needs to invoke two other services and needs to get the a combined result. In
simple words the user needs to do a mash-up. A lightweight BPEL library with a
programming API is ideal for such a use case.

A client side application might have a requirement to interact with several
web services to produce a result or to execute a workflow. This requirement can
be easily & flexibly fulfilled by using a light weight BPEL runtime which can
be embedded to the client application. This runtime will be more useful if the
developers are given an option to create the process model programmatically using
a simple API. Also the developers will become more creative and empowered if
they can add custom activities to that run time. One example is a custom activity
to take user input in a client side process by showing a dialog box. Another use
case is that users need to do non-web service orchestrations at the server side by
extending BPEL functionality. One such example would be to send e-mails as part
of a business process.

8 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

4.1. Design principles

This section articulates some of the principles that have guided our efforts to
design a BPEL engine that is light weight and embeddable.

Low Memory footprint. The BPEL-Mora engine should have a very low mem-
ory foot print in order to be embeddable. BPEL-Mora engine has deployed pro-
cesses and instances of those processes running. A single deployed process can have
several process instances of itself running. It can even be hundreds of instances
per process. Reducing the increase of memory usage per new process instance is
one of our main concerns. We achieve this by separating out the run time state
data of the process instances and the metadata about the process. Process model
representation represents only the process. Once the process is deployed its process
model remains unchanged during the run time. All the run time state data are
separated out to the context hierarchy which we call as the information model.

Scalability. A deployed business process may contain several numbers of par-
allel paths. BPEL does not impose any restriction for number of parallel paths a
process can have. At the same time, there can be several instances of a process
running at a given moment. If we take a given moment, there can be l number
of processes deployed, there can be on average m number of parallel paths per
deployed process and there can be on average n number of process instances per
process running in the engine. l ∗m ∗ n gives the total number of parallel paths of
execution at that given moment. This l∗m∗n number can easily go up to hundreds.
In a typical production environment it might well go up to thousands. This might
give rise to thousands of threads if the OS or language threading libraries are used
to create separate threads for each and every parallel path. As a solution to this
we came up with a software emulated engine using a multi processor scheduler to
execute the activities in process instances.

Extensibility. Our objective is to make BPEL-Mora an extensible workflow
based service orchestration and composition engine with complete support for
BPEL and with the ability to support many more. To make BPEL-Mora extensible
BPEL-Mora should provide users with the ability to write and include their own
activities. Visitor pattern [16] is popularly used in many BPEL engines to provide
this extensibility. With the use of visitor pattern all the execution logic goes to one
visitor class, making that class huge and unmanageable. Users need to be given
access to modify this visitor class in order to add new activities and the user will
be directly modifying the most important class of the engine.

Because of those defects, we wanted to avoid the visitor pattern to come up
with much more modular, pluggable, component architecture. BPEL-Mora pro-
vides two abstract classes, one for simple activities and another one for complex
activities, for the users to extend when writing their own custom activities. Users
can use their custom written activities in process model by having the newly writ-
ten activity classes in the class path. Users will be able to share these custom
activities with other users.

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 9

4.2. High level architecture

Figure 1. High Level Architecture of BPEL-Mora

Process Model is used to represent workflows inside the engine. Any workflow
that needs to be executed in the BPEL-Mora engine needs to be represented using
an instance of an object model. Process model acts as the execution model of the
workflow. Process model for a workflow can be created either programmatically or
by deploying a BPEL document.

Information model consists of the context hierarchy, which stores the runtime
state of the engine and processes in various levels.

Kernel with a multi processor scheduler is introduced to ensure the engine
scale without proliferation of threads.

Web service layer consists mainly of BPEL Receive and Invoke activity im-
plementations. BPEL-Mora is built on top of Apache Axis2 web services engine.

Management module provides the functionality to deploy BPEL processes
and to do simple management tasks.

Timer service is used by the Wait and Pick BPEL activities and for deciding
time outs in several queues like in the message buffer of Receive activity.

5. Information Model

Information model is designed to store the run time state of the engine. Four
contexts have been introduced to store state data at various levels.

Engine Context holds the run time state data of the engine. This is the top
element of the context hierarchy. Engine Context contains a map of all the deployed
Process Contexts.

10 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

Figure 2. Context Hierarchy

Process Context holds the run time state data of a deployed process. A Pro-
cessContext contains a map of all the top level InstanceContexts of that process.
The number of InstanceContexts in this map equals to the number of instances of
this process running in the engine.

Instance Context holds the run time state data of a single path of execution.
It also holds a pointer called current activity which points to the activity being
executed now or to the activity to be executed next. Each process instance run-
ning in the engine has a top level InstanceContext which represents that process
instance. There can be a tree of InstanceContexts per process instance depending
on the number of parallel paths in the process. When encountered a BPEL Flow
activity BPELMora engine creates new InstanceContexts per each parallel path
defined. Flow activity completes execution when all of its parallel paths are com-
pleted. On completion of the parallel paths, the original parent InstanceContext
continues in the remaining execution path. This parent InstanceContext is used
to store the state of links of the respective Flow activity while it’s waiting for the
completion of the parallel paths. More about handling links is discussed in the
section 6.

Scope Context is used to store the data belonging to BPEL Scopes such
as values of variables and correlations. InstanceContext always maintains a ref-
erence to the scope context of its current scope. BPEL uses lexical scoping. A
new ScopeContext object is created whenever a ScopeActivity is encountered in
an execution. This newly created ScopeContext is made a child of the existing
ScopeContext giving rise to a ScopeContext hierarchy as shown in figure 3. BPEL-
Mora uses this hierarchy as a search tree for variable and correlation values and
fault handlers. A recursive look up of the ScopeContext hierarchy happens when
a variable, correlation or a fault handler is referenced by an activity. BPEL-Mora
first checks whether it is defined in the current scope, if so looks up for that in the
current ScopeContext. If it is not defined or found in that context, then the engine
looks up for that in the hierarchy until the value is found. This scoping context

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 11

hierarchy provides lexical scoping with the price of a performance penalty due to
the recursive lookups. But we can ignore this performance penalty as negligible
since scope hierarchies are shallow and simple in most of the BPEL documents.

Figure 3. Lexical Scoping System

6. Process Model

Purpose of the process model is to provide an object model representation of a
deployed process capturing the meta-data from the BPEL document. We can also
call the BPEL-Mora run time process model tree as an execution model. Objects
in process model are designed to be run time stateless. Process model tree contains
information about the process, but not about the process instances. Process model
contains implementation classes corresponding to each and every activity specified
in the BPEL specification. There are two main categories of activities specified
in the BPEL specification namely simple activities and structured activities. As
shown in figure 4, process model contains abstract classes to capture the common
functionality needed for the above two activity categories.

Each and every class corresponding to an Activity contains an execute()
method which contains the execution logic for that activity. This method takes in
an InstanceContext object as the parameter. This InstanceContext object is used
to store and retrieve all the state date regarding the process instance. According
to the BPEL-Mora architecture implementations of execute() method needs to

12 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

be re-entrant. On other words, the values of the local variables of that Activity
object cannot be changed within this method. This gives the ability to share a
copy of an activity object among different process instances without worrying
about concurrency issues.

A need for return of control to the parent activity arises when implement-
ing several workflow patterns [17] like sequence, parallel split (BPEL Flow) and
while using BPEL-Mora process model. The method executeParent() has been
introduced to the Activity abstract class to cater to the above requirement. New
powerful custom activities can be added to the engine by extending one of the
above two abstract classes and using the executeParent method to return the
control back to parent whenever needed. Users will also be able to share their
custom written classes with other BPEL-Mora users.

Figure 4. Class hierarchy of the Process Model

Process model tree is created using a linked list approach. Child activity
objects of a structured activity maintain parent-to-child, child-to-parent doubly
linked relationship in first and last child with the parent activity object. A single
child-to-parent link relationship is maintained in other children. All the siblings
maintain a link to the next sibling connecting all the children of a structured
activity.

6.1. Handling Links

A BPEL flow activity executes its immediate child activities concurrently giving
rise to several parallel paths of execution. Flow activity enables expression of syn-
chronization dependencies between activities that are running on different parallel
paths. The link construct is used to express these synchronization dependencies.
Links of a flow activity are separately defined inside the flow activity. Exactly one
activity can declare to be the source and another activity can declare to be the
target of a link. We say X has a synchronization dependency on Y, if activity X is
the target of a link that has activity Y as the source.

As discussed in section 4 when met with a flow BPEL activity, BPEL-Mora
creates new child instance contexts for each parallel path, while the parent instance

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 13

Figure 5. Links

context waits till execution is complete in all the parallel paths. BPEL-Mora uses
this parent instance context to store a list of Link objects whenever a Flow activity
with defined links is executed. These Link objects can be in true state, false state
or not evaluated state depending on the state of the source activity of that link.
When the Link object status is not evaluated target activity has to wait till
the Link state is evaluated. In BPEL-Mora implementation an Instance Context
executing in a parallel path target Activity can register with a Link object in not
evaluated state to be notified when the link is evaluated.

7. Kernel

A kernel with a multiprocessor scheduler is introduced to BPEL-Mora in order to
ensure the engine scale without proliferation of threads. Following sections discuss
about the scheduling of process instances and the life cycle of process instances.

7.1. Scheduling BPEL activities

A multi processor scheduler with a configurable number of processors is imple-
mented in the BPEL-Mora kernel. In here normal java Threads in a thread pool
were used to emulate the processors. Each worker thread in the thread pool simu-
lates one processor. The decisions that we had to take with regards to the scheduler

14 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

were (1) Unit of execution (2) Scheduling policy (3) Number of worker threads (4)
Number of scheduling queues.

Figure 6. BPEL-Mora Kernel

As shown in Fig. 6, a worker thread picks an Instance Context object (rep-
resents a process instance) from the head of the scheduler queue and executes the
current activity of the process instance. Then, depending on the resulting state
the process instance is put into the relevant queue.

A single activity in a process model is chosen as the unit of execution for
simplicity and clarity. All the currently supported activities including all the BPEL
activities were designed to have a limited number of instructions per execution.
All the current activities were carefully designed not to block the worker threads
during the execution. Examples for this behavior are Receive, Invoke and Wait
activity implementations. When a Receive or a Wait activity is executed, the
Instance Context object belonging to the execution will be put into the appropriate

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 15

waiting queue freeing the worker thread. A call back object is used to store the
Instance Context object in the case of Invoke activity.

With the above design an assumption can be made that a BPEL-Mora ac-
tivity will be executed in a predictable small bounded time period. With this
assumption, a non-pre-emptive priority based scheduling policy is used in the
BPEL-Mora scheduler. BPEL-Mora run time does not enforce any time constraint
for the duration of execution of an activity. Priority for a process can be spec-
ified at the deployment time. Above assumption invalidates if users add custom
activities that take longer times to execute.

Number of worker threads in the scheduler thread pool is made configurable
to cater for the various underlying resource requirements. As an example, a server
with parallel processors can gain advantage by increasing the number of threads
while a single processor pc can harness the best by having a small number of
threads like 5 threads.

Currently, BPEL-Mora scheduler uses a single scheduler queue assuming the
context switch time is very small relative to the time taken for a unit of execution.
Another option is to have a scheduler queue for each and every worker thread.
An implementation like that can reduce the context switching time. On the other
hand it will unnecessarily increase the complexity of the scheduler due to the need
to perform queue load balancing. The scheduler queue implementation needs to
be blocking and thread safe. Hence, we have chosen a PriorityBlockingQueue [18]
as our scheduling queue implementation.

7.2. Process instance life cycle

Process instances are created with the reception of a designated startable invo-
cation message and are destroyed when the last activity of the process instance
completes execution. Between those two we can define several more states with re-
gards to the scheduler. Process instances may have parallel execution paths. These
parallel execution paths can be in different states at a given time. Because of this
it makes more sense to discuss about process instance life cycles with regard to
a single execution path, which will be referred to as “single path of execution”
here after. These single paths of execution are represented inside the engine by the
instance context objects.

Four major states can be identified in a single path of execution of a process
instance. They are (1) ready (2) running (3) blocked (4) terminated. All the paths
of execution in the ready state are waiting in the scheduler’s queue. New process
instance entering the engine are initially in the ready state. A process instance
is in the running state when it is executing inside the engine. A single path
of execution terminates either when the process instance terminates or when it
finishes executing the last activity in its execution path. A single path of execution
represented by an instance context enters into the blocked state in 3 ways.

1. A single path of execution represented by an instance context enters into
Blocked-Join state when it is waiting for a link to be evaluated. Instance

16 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

context waits till the link gets evaluated. An instance context in Blocked-Join
state moves to the Ready state upon successful evaluation of the link.

2. A single path of execution represented by an instance context enters into a
Blocked-Wait state when a wait BPEL activity is executed. An instance
context in Blocked-Wait state moves to the Ready state upon reaching of
the given deadline or upon expiration of the specified time period.

3. A single path of execution represented by an instance context enters into
a Blocked-Receive state when a receive BPEL activity is executed as
well as a synchronous Invoke activity is executed. An instance context in
Blocked-Receive state moves to the Ready state upon receiving the expected
message.

8. Interfacing with web service engine

BPEL-Mora is built on top of Apache Axis2. By the use of Axis2 BPEL-Mora
takes a lot of features for granted such as performance, ability to invoke RESTful
Web services, asynchronous support, WS-* capabilities through Axis2 modules,
and so on. Interfacing with web service layer is done through the implementations
of invoke and receive BPEL activities.

Figure 7. Apache Axis2 integration with the receive activity

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 17

8.1. Providing web service operations

Each and every process in BPEL-Mora is registered as a service with the web
service engine. Hence, we expect the web service engine to route the messages to
the correct service, which in BPEL-Mora scenario is to route the message to the
correct process. Web service layer in BPEL-Mora consists of a MessageReceiver
implementation. MessageReceiver is an interface provided by Axis2, to use per
service basis. Axis2 delivers the incoming messages to particular service to the
specified MessageReceiver [9] implementation. BPEL-Mora MessageReceiver of a
deployed process maintains a map of references to receive activity objects in a
process against their operation names. BPEL-Mora uses this table to route mes-
sages to the correct receive activity object within the deployed process based on
their operation name. Each and every Receive Activity object maintains a queue
of InstanceContext objects (process instances) blocked by waiting at that activity.
Following sequence is followed when a message is received to a receive activity.

1. If the message receive activity object is designated as startable, then it will
create a new instance of the process.

2. Otherwise the message is routed to the correct process instance in the queue
based on the correlation data [1] in the message.

3. If a matching instance is not found in the queue, the message is buffered in
a separate queue for a certain time period waiting for a matching process
instance.

8.2. Invoking web service operations

Invoking of external web services is done through an interface similar to WSIF
[4]. This interface supports the creation of dynamic clients based on the WSDL
binding. The web service invocation interface is an implementation of Adapter
Design pattern [19]. The invocation model wraps Axis2 [3] client programming
API and provides a Dynamic Invocation Interface (DII). BPEL-Mora web service
invocation supports DII with or with out the WSDL. It is mandatory to provide
the end point reference of the target service, in the case where the WSDL is not
available.

Invoke Activity implementation handles all the request-response type invoca-
tions through the Axis2 client side non-blocking invocation mechanism. A special
callback handler object containing the InstanceContext object corresponding to
the process instance is used to receive the response.

9. Evaluation

Two tests were done to measure the performance of BPEL-Mora.
First test focuses on measuring the scalability of BPEL-Mora kernel and

the scheduler. We used an embedded BPEL-Mora engine inside a test case and
programmatically created and deployed the process. The process contained a flow
activity inside a sequence activity. A custom activity which simply prints out its

18 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

number and the execution count with a small time consuming logic was used as
the children of the flow activity. This process was triggered programmatically.

Number of children for Time taken to Avg. Time per 100
the Flow activity execute (ms) children (ms)

100 745 745
500 2064 412.8
1000 3443 344.3
2000 7130 356.5
5000 15701 314.12
10000 29642 296.42
15000 41578 277.18

Table 1. Scalability of the scheduler (figures are the average of 5 runs)

These tests shows scalability of the engine and the fact that number of parallel
paths and the overhead of creating InstanceContext object per each path do not
affect the performance.

A second test was focused on the memory foot print of the engine. BPEL-
Mora was deployed inside Apache Axis2 1.1 running inside Apache Tomcat 5.0.28
with jdk 1.4.2. A 25 kb BPEL document was deployed in BPEL-Mora. This process
was designed to go into Blocked-WAIT state as soon as the process instance was
created.

BPEL-Mora implementation followed a minimalist approach from day one.
As a result of that the size of BPEL-Mora library remains less than 130kB. BPEL-
Mora depends only on the Axis2 and its dependent libraries. Due to that adding
BPEL capability to an existing Axis2 server can be done with the mere addition
of 130 KB BPEL-Mora library. To embed BPEL-Mora in an application or to run
it standalone requires the addition of Axis2 and dependent libraries, which are of
size 2.8 MB.

10. Conclusion and future work

BPEL-Mora is a lightweight embeddable extensible BPEL compliant process en-
gine. BPEL-Mora can be embedded into the web service engine to execute server

Process Instances 1 100 200 300 400 500 600 700
BPEL-Mora Mem. usage 2.4 10.4 25 33 41.5 48.4 61.4 66
ActiveBPEL Mem. Usage 2.6 37.3 Reached a Thread limitation

Table 2. Memory usage Vs No. of process instances

BPEL-Mora: Lightweight Embeddable Extensible BPEL Engine 19

side processes. BPEL-Mora has the capability to serve as a process run time to
execute client side processes. In this paper, we presented the motivation behind
our effort, discussed the architecture of BPEL-Mora engine and major design deci-
sions we took in implementing BPEL-Mora. Affect of issues related to scalability,
extensibility and memory foot print, to the embeddability of the engine was also
addressed in this paper. Information model captures the run time state data of
the process instances and manages the lexical scoping of variables. Architecture
of the stateless object model was discussed focusing on extensibility and memory
foot print. Architecture of the Runtime engine with its scheduler was discussed
along with the various decisions we had to take during the implementation of the
scheduler.

Providing full BPEL capability including fault handling and event based con-
structs together with improving the programming API to ease the programmatic
creation of processes can be seen our immediate future objective. BPEL specifica-
tion does not define how WS-Transactions [20, 21, 22] set of specifications can be
used to provide transaction capability for BPEL processes. Adding transactions
support for business processes using WS-Transactions family of specifications will
be one of our future research goals.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services Version 1.1, May 2003. ftp://www6.software.
ibm.com/software/developer/library/wsbpel.pdf.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services De-
scription Language (WSDL), Version 1.1, March 2000. http://www.w3.org/TR/wsdl.

[3] Web Services Apache Axis2 , June 2006, http://ws.apache.org/axis2.

[4] Web Services Web Services Invocation Frame work (WSIF), June 2006, http://ws.
apache.org/wsif.

[5] Thatte, S. , XLANG: Web Services for Business Process Design,Technical report,
Microsoft, 2001.

[6] Leymann, F. , Web Services Flow Language, Technical report, IBM, 2001.

[7] D. Box et al, Simple Object Access Protocol (SOAP)1.1, May 2000. http://www.
w3.org/TR/SOAP.

[8] M. Gudwin et al, Simple Object Access Protocol (SOAP)1.2, May 2000. http://

www.w3.org/TR/soap12-part1/

[9] Apache Axis2, Architecture Guide. http://ws.apache.org/axis2/1_1/

Axis2ArchitectureGuide.html

[10] Active BPEL, June 2006, http://www.activebpel.org

[11] Web Services Apache Axis1.x , June 2006, http://ws.apache.org/axis.

[12] ActiveBPEL Engine Architecture, July 2006, http://www.activebpel.org/docs/

architecture.html

20 Gunarathne, Premalal, Wijethilake, Kumara and Kumar

[13] Wolfgang Emmerich, Ben Butchart, Liang Chen and Bruno Wassermann, Grid Ser-
vice Orchestration using the Business Process Execution Language (BPEL), October
2005. (pp. 28-30), http://sse.cs.ucl.ac.uk/omii-bpel/publications/bpel.pdf

[14] WebSphere Process Server Version 6.0 System Requirements, July 2006. http://

www-306.ibm.com/software/integration/wps/sysreqs/

[15] FiveSight PXE, June 2006, http://pxe.fivesight.com/

[16] J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In Proceedings of
COMPSAC’98, 22nd Annual International Computer Software and Applications
Conference, pages 9-15, Vienna, Austria, August 1998. http://www.cs.ucla.edu/

~palsberg/paper/compsac98.pdf

[17] Workflow patterns, June 2006, http://is.tm.tue.nl/research/patterns/

patterns.htm

[18] J2SE 5.0, Concurrency Utilities, June 2006, http://java.sun.com/j2se/1.5.0/

docs/

relnotes/features.html\#concurrency

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-Wesley
Pub Co, January 1995. ISBN 0201633612.

[20] F. Curbera et al. Web Services Coordination (WS-Coordination),Version 1.0, August
2005.

[21] F. Curbera et al. Web Services Atomic Transaction (WS-AtomicTransaction),Version
1.0, August 2005.

[22] F. Curbera et al. Web Services Business Activity Framework (WS-Business Activ-
ity),Version1.0, August 2005.

Acknowledgment

Many thanks to our Project Supervisors Sanjiva Weerawarana and Sanath Jayasena
for many insights and discussions. We thank our Project Coordinator Shantha Fer-
nando and Vishaka Nanayakkara for their support throughout the project.

Thilina Gunarathne, Dinesh Premalal, Tharanga Wijethilake,
Indika Kumara, Anushka Kumar
Department of Computer Science and Engineering
University of Moratuwa
Sri Lanka
e-mail: thilina.gunarathne@cse.mrt.ac.lk, dinesh.premalal@cse.mrt.ac.lk,

tharanga.wijethilake@cse.mrt.ac.lk, indika.kumara@cse.mrt.ac.lk,

anushka.kumar@cse.mrt.ac.lk

Whitestein Series in Software Agent Technologies, 21–32
c© 2007 Birkhäuser Verlag Basel/Switzerland

A Cross-Layer Approach to Performance
Monitoring of Web Services

Nicolas Repp, Rainer Berbner, Oliver Heckmann and Ralf Steinmetz

Abstract. An increasing amount of applications are currently built as Web
Service compositions based on the TCP/IP+HTTP protocol stack. In case
of any deviations from desired runtime-behavior, problematic Web Services
have to be substituted and their execution plans have to be updated accord-
ingly. One challenge is to detect deviations as early as possible allowing timely
adaption of execution plans. We advocate a cross-layer approach to detect bad
performance and service interruptions much earlier than by waiting for their
propagation through the full protocol stack. This position paper describes an
approach to gain detailed real-time information about Web Service behav-
ior and performance based on a cross-layer analysis of the TCP/IP+HTTP
protocols. In this paper we focus especially on TCP. The results are used to
make decisions supporting service selection and replanning in service-oriented
computing scenarios. Furthermore, generic architectural components are pro-
posed implementing the functionality needed which can be used in different
web-based scenarios.

Keywords. Web Services, Monitoring, Cross-Layer, Service-oriented Architec-
tures.

1. Introduction

Almost every Internet user has encountered problems while using services in the
Internet, e.g., browsing the World-Wide Web or using Email. Long to infinite
response times due to congestion or connection outage, non-resolvable URLs, or
simple file-not-found errors are some of the most common ones. Human users tend
to be flexible in case of any service ”misbehavior”. Users wait and check back later
or even select a different service if the originally requested service is not available.
In contrast, computer systems as service consumers are not as flexible. Appropriate
strategies to handle those runtime events have to be implemented during design
time of the computer system.

22 Repp, Berbner, Heckmann and Steinmetz

Services are the key building block of service-oriented computing. A service is
a self-describing encapsulation of business functionality (with varying granularity)
according to [1]. Following the service-oriented computing paradigm, applications
can be assembled out of several independent, distributed and loosely-coupled ser-
vices [2]. Those services can be provided even by third parties. One option to
implement services from a technical perspective is the use of Web Services. Web
Services are based on different XML-based languages for data exchange and inter-
face description, e.g., SOAP and the Web Service Description Language (WSDL).
For the transport of data and the Web Service invocation mainly the Transmission

Hypertext Transfer Protocol

Transmission Control Protocol

Internet Protocol

WS*
REST

XML-RPC
...

...

Processes
Discovery, Aggregation, Choreography, ...

X
M

L
,
D

T
D

,
S

c
h
e
m

a
XML, DTD, Schema

X
M

L
,
D

T
D

,
S

c
h
e
m

aS
e

c
u

rity

M
a

n
a

g
e

m
e

n
t

Figure 1. Modified W3C Web Services Architecture Stack [3]

Control Protocol (TCP) / Internet Protocol (IP) suite (e.g., RFC 793, [4], or [5])
as well as the Hypertext Transfer Protocol (HTTP - e.g., RFC 2616 or [6]) are
used. Figure 1 shows the W3C Web Services Architecture Stack enhanced by al-
ternative Web Service technologies and the communication protocols used. It will
be the basis for our further considerations.

In order to build applications from different existing Web Services the follow-
ing generic phases are needed [7]: First, suitable Web Services have to be selected
according to the functional and non-functional requirements of the application.
Second, the selected Web Services have to be composed to an execution plan.
Hereto, a composition can be described, e.g., on basis of the Business Process
Execution Language (BPEL) [8]. In the next step the execution plan can be pro-
cessed. During the execution phase it is possible that parts of the composition do
not act as expected with regard to the non-functional requirements. Reasons for

A Cross-Layer Approach to Performance Monitoring of Web Services 23

misbehavior of Web Services are manyfold, e.g., server errors while processing a
request, network congestion or network outages. Therefore, it is necessary to select
alternative Web Services and to replan the Web Service execution [9]. Replanning
is always a trade-off between the costs of creating new plans to fulfill the over-
all non-functional requirements and the costs of breaking the requirements [10].
Timely action is required to reduce the delay in the execution of an application
due to replanning and substitution of Web Services. Hence, we propose a proactive
approach initiating countermeasures as soon as there is evidence that a deviation
might occur in the near future with a certain probability p. To start replanning
before the deviation happens allows replanning to be carried out in parallel to
the service execution itself. The results of replanning have to be discarded with
probability 1 − p as the alternative plans are not needed.

Furthermore, current approaches often lack detailed information about the
status of a Web Service due to the information hiding implemented in the layer
model of the TCP/IP+HTTP protocol stack underlying Web Services. For this,
we advocate a cross-layer approach to detect bad performance and service inter-
ruptions. Cross-layer analysis allows decisions based on deeper knowledge of the
current situation as well as decisions made much earlier than by waiting for infor-
mation propagating through the full protocol stack.

The rest of this position paper is structured as follows. In the next section we
describe Quality-of-Service (QoS) and its meaning for Web Services. We especially
focus on performance as a part of Web Service QoS. Afterwards, the relation
between TCP/IP+HTTP and Web Service performance is discussed. Our cross-
layer approach to performance monitoring a performance anomaly detection of
Web Services is introduced thereafter. The paper closes with a conclusion and an
outlook on future work.

2. Quality-of-Service and Performance of Web Services

In this section we discuss QoS with regard to Web Services and Web Service
compositions with a focus on Web Service performance.

2.1. Quality-of-Service with regard to Web Services

Similar to QoS requirements in traditional networks, there is a need to describe and
manage QoS of Web Services and Web Service compositions. Generally, QoS de-
fines non-functional requirements on services independent from the layer they are
related to. QoS can be divided into measurable and non-measurable parameters.
The most common measurable parameters are performance-related, e.g., through-
put, response time, and latency. Additionally, parameters like availability, error-
rate, as well as various non-measurable parameters like reputation and security
are of importance for Web Services [10, 11]. The meaning of QoS requirements can
differ between service providers and service requesters in a service-oriented com-
puting environment [11]. From a service providers’ perspective, providing enough
capacity with the quality needed to fulfill Service Level Agreements (SLA) with

24 Repp, Berbner, Heckmann and Steinmetz

different customers is a core issue. Service requesters are more focused on managing
bundles of Web Services from different vendors in order to implement their busi-
ness needs. Therefore, management of QoS requirements is done on aggregations
of Web Services, to a lesser extend on single Web Services.

There is a variety of other definitions of Web Service QoS. A more extensive
approach identifies the following requirements [12]: performance, reliability, scal-
ability, capacity, robustness, exception handling, accuracy, integrity, accessibility,
availability, interoperability, security, and network-related QoS requirements. Es-
pecially the last requirement is of further interest. As many requirements of Web
Service QoS are directly related to the underlying network and its QoS, implemen-
tations of network QoS mechanisms, e.g., Differentiated Services (DiffServ) or the
Resource Reservation Protocol (RSVP), are also covered by the definition as well.

2.2. Performance of Web Services

Performance of Web Services is not a singular concept. Rather, it consists of sev-
eral concepts which themselves are connected to different metrics and parameters.
Again, there are several definitions of Web Service performance. We will use the
definition provided by the Web Services Architecture Working Group of the W3C
as a foundation for our own defintion. According to the W3C, performance is
defined in terms of throughput, response time, latency, execution time, and trans-
action time [12]. Both execution time and latency are sub-concepts of the W3Cs
definition of response time. Transaction time describes the time needed to pro-
cess a complete transaction, i.e., an interaction consisting of several requests and
responses belonging together.

For this paper, we define performance in terms of throughput and response
time. Response time is the time needed to process a query, from sending the request
until receiving the response [13]. Response time can be further divided into task
processing time, network processing time, i.e., time consumed while traversing the
protocol stacks of source, destination, and intermediate systems, as well as network
transport time itself. In case of an error during the processing of a request or a
response, the response time measures the time from a request to the notification
of an error. We define response time as follows:

tresponse(ws) = ttask(ws) + tstack(ws) + ttransport(ws)

A large fraction of a web service’s response time is determined by the processing
time for requests and their respective messages in both intermediate systems and
end-points. For the measurement of the response time, the encapsulation of data
into XML messages and vice versa, compression and decompression of data, as
well as encryption and decryption of messages also have to be taken into account.
Furthermore, time for connection setup, for the negotiation of the connections
parameters as well as the amount of time used for authentication are part of the
response time as well.

A Cross-Layer Approach to Performance Monitoring of Web Services 25

Throughput, measured in connections, requests or packets per second, de-
scribes the capability of a Web Service provider to process concurrent Web Ser-
vice requests. Depending on the layer, different types of connections can be the
basis for measurements, e.g. TCP connections, HTTP connections, or even SOAP
interactions. We define the throughput of a Web Services as:

throughput(ws) = #requests(ws)
time

Additionally, we have to define the concept of ”performance anomaly” we
will use later on. Performance anomalies describe deviations from the performance
expected in a given situation. Performance anomalies do not have to be exceptions
or even errors, e.g., a response time which exceeds the value defined in a SLA is
also a performance anomaly with regard to business requirements. Furthermore,
performance better than expectations is also an anomaly.

3. A Cross-layer Approach to Performance Monitoring and
Anomaly Detection

In this section we describe an approach for performance monitoring and perfor-
mance anomaly detection based on packet capturing and the application of simple
heuristics. Therefore, we analyze IP, TCP, and HTTP data. The analysis of SOAP
is not in scope of this paper, as we want to stay independent of a certain Web Ser-
vice technology. Our approach can be applied to various alternative Web Service
technologies as well, e.g., XML-Remote Procedure Call (XML-RPC) or Represen-
tational State Transfer (REST). Nevertheless, in our examples we use SOAP as it
is the most common Web Service technology in use.

3.1. Protocol Parameters for Performance Monitoring

SOAP request

SOAP response

Service
Requester

Service
Provider

e.g., Internet

Figure 2. Simple Web Service interaction

Consider the simple Web Service invocation of a single Web Service as de-
picted in Figure 2. A service requester generates a SOAP request and sends the
message using HTTP to the service provider for further processing. The message
has to pass several intermediate systems on its way between the interaction’s end-
points. The SOAP response message is again transported using HTTP.

26 Repp, Berbner, Heckmann and Steinmetz

During data transfer several problems can occur, which all have an impact
on Web Service execution. Beginning with the network layer, we may face routing
problems, e.g., hosts which are not reachable, congestion in Internet routers as well
as traffic bursts. Additionally, on transport layer there are also potential pitfalls
like the retransmission of packets due to packet loss or connection setup problems
generating delays. Finally, there are also some potential problems on application
layer with regard to Web Services for example in form of resources, which are not
existing or not accessable for HTTP or problems in processing of SOAP messages
due to incomplete or non-valid XML data.

Although, many of the above problems are solved in modern protocol stack
implementations, we can use the knowledge about them to define measurement
points for performance monitoring. Depending on the problems in scope different
protocol parameters have to be used. Table 1 gives an overview of measurement
points on different protocol layers. We will use the transport layer parameters as
an example to derive metrics and heuristics for performance anomaly detection in
the following section.

Protocol Measuring Point / Parameter
IP ICMP messages

TCP

Size of advertising window
Roundtrip time (RTT)
Sequence numbers in use
Flags used in packets
Information about timers

HTTP Header information

Table 1. Measuring points per protocol layer

3.2. Metrics and Heuristics for Performance Anomaly Detection

As noted in Section 2.1 we can differentiate between the requirements of service
requesters and service providers. To visualize our concepts we will focus on the
service requester’s perspective in this position paper. Before basic heuristics are
proposed we present metrics based on the parameters presented in Table 1, which
will be the foundation of our heuristics.

We propose several metrics based on parameters of the transport layer pro-
tocol:

• M1 - Average throughput in bytes per second (BPS).
• M2 - Throughput based on a moving average over window with size n seconds

in BPS.
• M3 - Throughput based on exponential smoothing (first degree) with α vary-

ing in BPS.

A Cross-Layer Approach to Performance Monitoring of Web Services 27

• M4 - Roundtrip time based on a moving average over window with size n
segments in seconds per segment.

• M5 - Number of gaps in sequence numbers based on a moving average over
window with size n seconds in number of gaps per second.
The aggregation of single metrics in combination with the usage of appro-

priate thresholds allows us to build heuristics in order to detect anomalies with
performance impact. The following two simple heuristics show the idea how to
design heuristics based on the metrics discussed. Both were derived from experi-
mentations in our Web Service test environment.

• H1Requester : M1 (or M2, M3) in aggregation with M4, i.e., throughput com-
bined with RTT.

• H2Requester : M4 in aggregation with M5, i.e., RTT combined with the amount
of gaps in TCP sequence numbers.

Singular metrics are in some cases not sufficient for robust monitoring, e.g., M5
without any information about RTT does not offer useful information.

In addition to those transport layer based heuristics, further parameters from
other protocol layers and the respective metrics can be combined in order to cre-
ate different cross-layer heuristics. Nevertheless, it is important that metrics and
the related heuristics have to be calculated in an efficient way in order to keep
additional processing times of our approach low.

3.3. Exemplary Evaluation of Our Approach

To show the feasibility of our approach we set up an experiment. The test envi-
ronment consists of a 1.4 GHz Centrino with 1.256 GByte RAM running Windows
XP as service requester and a 1.42 GHz G4 with 1 GByte RAM running Mac OS
X as service provider. Apache Tomcat 5.5.17 is used as an application server. Both
systems use Java 1.5 and Axis 1.4 as SOAP implementation. They are connected
by 100 MBit/s ethernet. For packet capturing windump v3.9.3 is used.

First, we measure the response time of a Web Service in our test environment.
As payload we use SOAP messages of variable size. Table 2 shows the results of
measuring 20 individual runs both with and without network outage for a pay-
load of 20 MByte, a test scenario, which was already implemented in our test
environment. Similar results can be observed with a payload of 150 KB. Network
outages are equally distributed in the interval [0;max(tresponse(ws) w/o outage)].
A network outage is modelled as a permanent 100% packet loss, i.e., without a
restart of the connection. Other scenarios, e.g., varying or temporary packet loss,

tresponse(ws) [ms] minimum maximum average
w/o outage 8,743 9,604 8,891
w/ outage 601,204 605,831 604,186

Table 2. SOAP response times

28 Repp, Berbner, Heckmann and Steinmetz

are not in focus of this position paper. As Table 2 shows, the response time of our
Web Service varies between 8.9 seconds (without outage) and 10.07 minutes (with
outage) for a 20 MByte payload.

rtt [ms] minimum maximum average
H1Requester 0.22 0.41 0.31

Table 3. Roundtrip times

In a next step, we apply H1Requester on our sample with network outages.
Especially the roundtrip time extracted from TCP packets can be used as trend
estimate for the overall response time in our scenario. Table 3 shows the average
roundtrip times of all 20 runs. Using a moving average of the roundtrip times mea-
sured as a benchmark for the roundtrip time of the packet in transfer, a warning
to the replanning system, e.g., if the estimated time (or a multiple) is exceeded
twice or more in a row. Unfortunately, throughput was not as good as the RTT as
an indicator for performance anomalies in the given scenario.

3.4. Identification of Required Architectural Components

In order to implement our ideas several architectural components are needed. The
key building blocks are depicted in Figure 3.

The upper part of Figure 3 describes existing generic components used for
planning and executing of Web Service compositions. The Interface allows deploy-
ment of workflows and configuration, the (Re-)Planning Component generates and
adapts execution plans, which are thereafter executed by an Orchestration Engine.
We propose the use of our Web Service Quality-of-Service Architectural Extension
(WSQoSX) as implementation means for the functionality needed. WSQoSX al-
ready supports planning and replanning of compositions [7, 10].

The lower part of the figure describes the two core components of our ap-
proach in addition to the protocol stack. This enhanced architectural blueprint
is named Web Service - Service Monitoring Extension (WS-SMX). The Monitor
specifies a component capable of eavesdropping of the network traffic between ser-
vice requester and provider. It also implements pre-filtering of the data passing
by reducing it to the protocol data of interest. Its data is passed to a Detector
component, which is responsible for the data analysis and therefore the perfor-
mance anomaly detection. The Detector component will implement the heuristics
discussed in Section 3.2. The Orchestration Engine initializes the Detector, which
itself prepares the Monitor. The Detector analyses the data received by the Mon-
itor and triggers the (Re-)Planning Component in case of any critical findings.
Additionally, the Detector component can be configured using the Interface. Both
Monitor and Detector are implemented in a first version in our test environment
based on Java 1.5 in combination with libpcap for packet capturing.

A Cross-Layer Approach to Performance Monitoring of Web Services 29

...

Orchestration Engine

M
o
n
ito

r
Internet Protocol

Hypertext Transfer Protocol

D
e
te

c
to

r

(Re-)Planning Component

Interface

Transmission Control Protocol

e.g., Internet

WS1 WS2 WSn

p
a

ra
m

e
te

riz
e

trig
g

e
r

in
itia

liz
e

Figure 3. Proposed architectural components

4. Related Work

As our approach is based on research of various domains this section gives an
overview of related work in those domains. Gschwind et al. [14] describe WebMon,
a performance analysis system with focus on Web transactions, i.e. transactions
between a Web browser and a Web server. Monitoring is done on basis of HTTP.
Web Services as remote method invocations as well as a further processing of the
results of the analysis are not in scope of their paper. Similar mechanisms as the
ones proposed by us are implemented in the commercial software package Vital-
Suite by Lucent, which is used for capacity planning and QoS management in large
networks. VitalSuite can also analyze different protocol layers simultaneously. In
contrast to the system we propose, VitalSuite’s focus is on reporting for end-users
instead of automated management. A more detailed view on performance manage-
ment of Web Services is discussed by Schmietendorf et al. [15]. The Web Services
Trust Center (WSTC) allows Web Services to be registered at and measured by
an independent third party for SLA management. WSTC enables the monitoring
of performance and availability of Web Services, but not under real-time require-
ments.

30 Repp, Berbner, Heckmann and Steinmetz

The management of Web Service compositions, their orchestration as well as
their optimization and planning is emphasized in various papers, partly mentioned
in the introduction. Of further interest in that domain is the Web Service Manager
(WSM) introduced by Casati et al. [16] focusing on the business perspective of Web
Service management, e.g., detecting and measuring SLA violations.

Fundamental work in the area of packet capturing, its justification and opti-
mization was carried out e.g., by Feldmann [17] and Mao et al. [18]. Both do not
focus on potential areas of application for packet capturing but on measurement it-
self. Feldmann uses cross-layer capturing and analysis of TCP and HTTP for later
Web performance studies. Mao et al. describe both drawbacks and advantages
of performance analysis of Web applications based on packet capturing mecha-
nisms. Furthermore, a reliable and efficient approach for monitoring in distributed
systems based on dispatching is discussed.

The idea of anomaly detection to predict certain critical situations is already
used, e.g., in the area of network security, especially in network intrusion detection.
Mainikopoulos et al. describe the use of statistical methods applied to network
usage traces for anomaly detection, e.g., an attack on a networked system [19].
Another area of application is discussed by Yuan et al. [20]. They propose a system
for automated problem diagnosis in applications based on system event traces.
The correlation of current traces and patterns of well known problems allows
an automatic identification of problem sources and prediction of possible system
errors. Furthermore, the authors use statistical learning and classifying methods
to dynamically adapt and improve their system.

5. Conclusion and Future Work

In this position paper we show that it can be beneficial to use information gath-
ered on different protocol layers for decision support. We present an approach and
several architectural components, which use hidden, low layer technical informa-
tion for proactive replanning of Web Service compositions. As this is a position
paper there are still some open issues we are researching. We are currently testing
machine learning algorithms for anomaly detection. Furthermore, we are working
on enhancements of existing optimization models for Web Service compositions
to support replanning [10]. Additionally, we will test our approach from a service
requester’s perspective in real world scenarios, using Web Services available to the
public, e.g., from Amazon or via Xmethods.

Using our approach for proactive replanning is not limited to SOAP Web
Services. As we are collecting our data on lower layers, the type of Web Service
can be exchanged, e.g., REST and XML-RPC based Web Services can also be
supported. But we are not even limited to Web Services as an area of application.
The approach can be of benefit, e.g., to enhance Web browsers to detect network
problems in a faster way.

A Cross-Layer Approach to Performance Monitoring of Web Services 31

References

[1] M.P. Papazoglou, Service-oriented computing: Concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE 2003). (December 2003) 3–12.

[2] M. Bichler, K.J. Lin, Service-oriented computing. IEEE Computer 39(3) (March
2006) 99–101.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Or-
chard, Web services architecture. (2004) http://www.w3.org/TR/ws-arch/, accessed:
2006/07/02.

[4] W.R. Stevens, TCP/IP illustrated (vol. 1): the protocols. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1994).

[5] A.S. Tanenbaum, Computer Networks. Fourth Edition, Prentice Hall, Indianapolis,
Indiana, USA (August 2002).

[6] J.C. Mogul, Clarifying the fundamentals of http. In: Proceedings of the 11th inter-
national conference on World Wide Web (WWW 2002). (May 2002) 25–36.

[7] R. Berbner, T. Grollius, N. Repp, O. Heckmann, E. Ortner, R. Steinmetz, An ap-
proach for the management of service-oriented architecture based application systems.
In: Proceedings of the Workshop Enterprise Modelling and Information Systems Ar-
chitectures (EMISA 2005). (October 2005) 208–221.

[8] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana, The next step in web
services. Commun. ACM 46(10) (2003) 29–34.

[9] G. Canfora, M.D. Penta, R. Esposito, M.L. Villani, Qos-aware replanning of com-
posite web services. In: Proceedings of the IEEE International Conference on Web
Services (ICWS05). (July 2005) 121–129.

[10] R. Berbner, M. Spahn, N. Repp, O. Heckmann, R. Steinmetz, An approach for
replanning of web service workflows. In: Proceedings of the 12th Americas Conference
on Information Systems (AMCIS06). (August 2006).

[11] D.A. Menasce, Qos issues in web services. IEEE Internet Computing 6(6) (2002)
72–75.

[12] K.C. Lee, J.H. Jeon, W.S. Lee, S.H. Jeong, S.W. Park, Qos for web services: Require-
ments and possible approaches. (2003) http://www.w3c.or.kr/kr-office/TR/2003/ws-
qos/, accessed: 2006/07/03.

[13] R. Jain, The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. John Wiley & Sons, Inc.,
New York, NY, USA (1991).

[14] T. Gschwind, K. Eshghi, P.K. Garg, K. Wurster, Webmon: A performance profiler
for web transactions. In: Proc. of the 4th IEEE Intl Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems (WECWIS 2002). (June 2002)
171–176.

[15] A. Schmietendorf, R. Dumke, S. Stojanov, Performance aspects in web service-based
integration solutions. In: Proc. of the 21st UK Performance Engineering Workshop
(UKPEW2005). (July 2005) 137–152.

[16] F. Casati, E. Shan, U. Dayal, M.C. Shan, Business-oriented management of web
services. Commun. ACM 46(10) (2003) 55–60.

32 Repp, Berbner, Heckmann and Steinmetz

[17] A. Feldmann, Blt: Bi-layer tracing of http and tcp/ip. Comput. Networks 33(1-6)
(2000) 321–335.

[18] Y. Mao, K. Chen, D. Wang, W. Zheng, Cluster-based online monitoring system of
web traffic. In: Proceedings of the 3rd international workshop on Web information
and data management (WIDM 01). (November 2001) 47–53.

[19] C. Manikopoulos, S. Papavassiliou Network intrusion and fault detection: a statistical
anomaly approach. IEEE Communications Magazine 40(10) (October 2002) 76–82.

[20] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, W.Y. Ma, Automated
known problem diagnosis with event traces. In: Proceedings of EuroSys2006. (April
2006) 375–388.

Acknowledgements

This work is supported in part by E-Finance Lab e.V., Frankfurt am Main.

Nicolas Repp
Technische Universität Darmstadt
Multimedia Communications Lab (KOM)
Merckstrasse 25
64283 Darmstadt
Germany
e-mail: repp@kom.tu-darmstadt.de

Rainer Berbner
Technische Universität Darmstadt
Multimedia Communications Lab (KOM)
Merckstrasse 25
64283 Darmstadt
Germany
e-mail: berbner@kom.tu-darmstadt.de

Oliver Heckmann
Technische Universität Darmstadt
Multimedia Communications Lab (KOM)
Merckstrasse 25
64283 Darmstadt
Germany
e-mail: heckmann@kom.tu-darmstadt.de

Ralf Steinmetz
Technische Universität Darmstadt
Multimedia Communications Lab (KOM)
Merckstrasse 25
64283 Darmstadt
Germany
e-mail: steinmetz@kom.tu-darmstadt.de

Whitestein Series in Software Agent Technologies, 33–46
c© 2007 Birkhäuser Verlag Basel/Switzerland

Employing Intelligent Agents to Automate SLA
Creation

Halina Kaminski and Mark Perry

Abstract. Service Level Agreements (SLAs) are commonly prepared and signed
agreements that form the contracts between a service provider and its cus-
tomers, defining the obligations and liabilities of the parties. Naturally, SLAs
should reflect the business needs of both customer and supplier. SLAs are
usually formed through either the adoption of a boilerplate agreement from
the provider, or through a mediation/negotiation process between the parties.
With the increasing adoption of software supply being implemented as a net-
work service, such schemes are rigid or slow and costly, This paper proposes a
system that the parties can use to facilitate both fast and flexible agreements.
It proposes automation of SLA creation from a set of Service Level Objectives
(SLOs), making use of software agents and adopting a social order function
by incorporating it into the decision process.

Keywords. Service Level Agreements, Service Level Objectives, Web Service,
Negotiation Manager, Software Agents, Software Service Provision.

1. Introduction

One of the many benefits offered by high speed and reliable large scale network
services has been the opportunity for software vendors to move rapidly into pro-
viding web services, and treating software delivery as a service. This movement
away from traditional packaged software requires a different type of agreement
between the providers of such software and their customers, which was previously
managed by simple licensing agreements, shrink wrap licenses and the like, or, for
larger systems, by negotiated licenses. In the service provision environment, the
relationship between the provider and customer is typically embodied in Service
Level Agreements (SLAs). These are commonly prepared and signed contracts be-
tween a service provider and its customers, defining the obligations and liabilities
of the parties. Depending on the nature of the agreement, it may take the form of
adopting a boilerplate contract from the provider, or for larger scale agreements,

34 Kaminski and Perry

a fully negotiated contract. Although the former may satisfy many aspects de-
sired by the customer, it is likely that there are many issues that do not fully
meet the customer’s needs. Fully negotiated agreements will avoid the inclusion of
such non-satisfactory terms, but will require the intervention of personnel who can
bring technical, business needs and legal perspectives to the negotiations [1]. It is
crucial for both parties to ensure that the terms of the agreement are realistic and
meet their requirements, as the financial consequences of failure can be fatal to the
business. For example, many service recipients do not require service availability
to be guaranteed for 99.99% of the time, as this would be very expensive, and a
provider guaranteeing a service that it cannot support may find itself subject to
penalties.

This paper proposes the automation of SLA creation from a set of Service
Level Objectives (SLOs), employing software agents and adopting a social order
function by incorporating it into the decision process. By adopting this system,
the service provider can form SLAs and satisfy the need for fast and flexible agree-
ments. Earlier work in SLA management has focused on a bottom up approach,
looking to capture managed SLA data [2]. However, the present study concentrates
on automatic SLA creation that integrates an effective negotiation process, remov-
ing the need for the service provider to engage highly qualified personnel at the
time of SLA adoption by the customer. One area in which companies are seeing
increased cost is support personnel for their system offerings. Where a company’s
business is primarily (software) service provision, such costs are critical to contain.
In such an environment there is a need to automate with the result of reducing
support and management costs [3]. This environment makes it very desirable to
automate the monitoring, selection, and decision making processes, leaving the
service provider more resources to focus on the provision of better services. Gen-
erally, most of the business decisions are based on resource prioritization. In this
paper by a resource we mean any service that is quantifiable, such as application,
server, CPU usage, disk space, license etc. Such automation can be achieved by
building a software system that embodies high level decisions and which possesses
the properties of autonomy, social ability, reactivity and pro-activeness. Intelligent
agents can provide this type of functionality, and an SLA real-time negotiation sys-
tem that utilizes these features will prove to be a great asset to service provision
enterprises.

2. Service Level Agreements

Most SLAs are formed by the provider of services, although it is possible that
a customer may come up with a totally original SLA in extraordinary circum-
stance. Here, we focus on the provision of SLAs from the provider side, but this
does not preclude the development of customer originating agreements. Naturally,
the provider’s perspective is for the SLA to reflect the business goals of the com-
pany. It is likely that this will also include the maximization of the customer

Employing Intelligent Agents to Automate SLA Creation 35

satisfaction in addition to the limitation of provider liability for problems such as
non-performance or failure to meet the quality goals. Rather than simply an end
issue, the development of SLAs must be considered a vital step in the business
process. Although static, preformed SLAs, which are basically monolithic agree-
ments, may continue to have a role to play in the future, it is desirable to enable
clients to select elements of an SLA, or the overall type of SLA, that can meet the
requirements of their own situation. Our aim is to provide methods for dynamic,
automated SLA creation. As well as benefiting the service provider with automa-
tion, such a flexible, dynamic system will allow customers to choose the type of
SLA scheme that they want and, consequently, exercise control over the policies
for which they have the most concern.

An SLA is not created in isolation, simply to meet the technical needs of
the parties, although these need to be considered. The total business strategy of
the service provider must be integral to the process. Generally, every SLA should
include:

a) the specification and availability of the service to the customer,
b) the performance goals of various components of the customer’s workloads,
c) the bounds of guaranteed performance and availability,
d) the measurement and reporting mechanisms,
e) the cost of the service,
f) priorities if service can not be delivered,
g) penalties if the customer exceeds the load,
h) penalties if the provider does not provide service as agreed,
i) schedules for follow-up meetings and interface [3].
SLAs become more complex when the provider offers multiple services such as

networking, online databases and end user direct support [4]. Usually, the services
provided by such businesses vary both in diversity and intricacy. Many organiza-
tions are now utilizing service level objectives (SLOs) as a means of expressing the
aims of the company, and to establish parameters for the tracking of the effective-
ness of their service infrastructure.

3. Service Level Objectives

A business in the highly competitive and growing online, on demand, service en-
vironment must have a clear business plan and define service levels that can be
attained. Every resource that is offered to a customer should have an indication
what its business levels are and what performance is acceptable to the end-user.
These will include performance requirements for applications offered as services,
and, in addition, more general business objectives that need to be attained by
the system. It has been suggested [5] that SLOs must be realistic, quantifiable
(measurable), clear and meaningful, manageable, cost effective and mutually ac-
ceptable. The target goals of SLOs have to reflect reality and should be attainable.
They also should include the metric definition which contain how the values are

36 Kaminski and Perry

measured and reported to the managing authority. Each SLO has to have a mean-
ingful description of the service level such that it can be easily understood by
a customer. For example, expressing service performance in packets dropped or
server congestion may not be of significance to the end-user. Most importantly,
SLOs have to be cost effective. There is a belief that the best SLOs are impractical
because they are too expensive to be measured. Simply having the objectives by
themselves is not sufficient to provide a high quality service.

A wide variety of service offerings poses another difficulty: to create the best
possible SLA from a selection of SLOs from an option pool requires careful consid-
eration and quantification of resource dependencies and the connections between
resources wherever possible. As an example, by having two servers that are each
capable of handling ten thousand transactions per second does not necessarily
mean that we can provide a service of twenty thousand transactions per second
to a customer. Both servers could be using a secondary resource that is limited to
a lower capacity (a common router for example). Thus the overall performance of
the entire business system is unlikely to be a simple summation of the resources
available. Many objectives can be embodied in a single SLA, and within the parts
of the SLA; for example, with a network service provision agreement there may be
ones dealing with availability, network latency, packet delivery and even report-
ing. This will clearly differ between clients and so there will be a different, though
similar, set of objectives associated with each client.

As an example, a partial SLO set for a resource (SellSolution application) is
shown in Table 1.

Application name = SellSolution . . .
Service Level Platinum Gold Silver . . .
Number of trans-
actions

unlimited 1000 500 . . .

Initial Response
Time

10 sec 12 sec 15 sec . . .

Transaction Pro-
cessing Time

2 µs 3 µs 5 µs . . .

Monthly Avail-
ability

98% 97% 95% . . .

Validity Time
Start/End

To be
filled at
the SLA
creation
time

To be
filled at
the SLA
creation
time

To be
filled at
the SLA
creation
time

. . .

Cost $500.- $ 150.00 $ 80.00 . . .

Table 1. SLOs for a specified resource

Employing Intelligent Agents to Automate SLA Creation 37

It is our goal to be able to set service levels for the resource (service) in such
a way that they are not custom made, but predefined and reusable. Ideally there
should be many levels for the same resource and the levels would differ in QoS and
the cost for flexible offerings. Levels of service can be predefined for the resources
of the same type, and the same level of service can be used by many customers.
SLOs also express a commitment to maintain a particular state of the service in
a predefined period of time. For example, (SLO) gold in Table 1 indicates that
the SellSolution will start within 12 seconds from the initial request and every
transaction will be processed in less than 3 µs. The customer is limited to perform
1000 transactions. In this service level the application will be available to the user
97% of time and the cost for this type of service is $150.00. The validation time
period has to be specified during the negotiation phase, i.e., when the customer
and the service provider agree to the specific service terms. We will return to this
example in section 6.4.

The flexibility of having a pool of SLOs available will result in the existence
of a range of service levels and performance metrics for each resource: for each
service there will be multiple SLOs on the basis of which SLAs will be offered.

4. Intelligent Agents

A negotiation model is an abstract representation of the structure, activities, pro-
cesses, information, resources, people, behaviour, goals, rules and the constraints
of a computing service environment. From the operational perspective, the negoti-
ation model supplies the information and knowledge necessary to support the SLA
creation process. There is a wide variety of information systems that participate in
business processes and they are aimed at fulfilling different business requirements.
Consequently in business, there are widely varying viewpoints and assumptions
regarding what is essentially the same subject. A negotiation framework should
have a very carefully “engineered” translation of such different reasoning. To deal
with the complex representation issue the system should support the appropriate
ontology. The purpose is to provide a shared and common understanding of a do-
main that can be communicated to people, application systems, and businesses
giving some specification of the meaning of semantics of the terminology within
the vocabulary [6]. The basic concepts of ontology have also been established in
works on intelligent agents and knowledge sharing, such as Knowledge Interchange
Format (KIF) and Ontolingua languages [7, 8].

The automation of a negotiation process can advantageously adopt the in-
telligent agent paradigm. The system can contain one super agent that gets its
knowledge from other agents: there can be an agent assigned to each sub-domain,
such as a business rules agent, a price agent, an obligations agent, and a resource
discovery agent. All of the secondary agents would be reporting to the super agent
and only the super agent will engage in the decision making and outer interactions.
Figure 1 depicts a Negotiation Model Agent assignment.

38 Kaminski and Perry

Figure 1. Intelligent Agent Assignments

The Negotiation Manager system is based on a multiple agent framework.
There should be one agent per every issue that needs an agreement such as re-
sources, price and business policies. Our model is based on a sequential decision
making (i.e., as each party presents an offer, a counteroffer or a decision to accept
or decline is made in sequence).

5. Negotiations

To date, most research in service provision has concentrated on how to manage SLA
compliance as well as tracking performance for planning purposes. The existence
of a variety of measuring tools allows the service managers to measure and track
performance of service levels based on the actual service usage. At the same time
the results obtained from such metrics can be used in planning corrective actions.

Automated contract creation enables service providers and their clients to
make use of technology to create SLAs within pre-planned and pre-approved pa-
rameters. Our goal is to use intelligent agents to provide automation of SLA devel-
opment and creation, (i.e., the creation of the electronic contracts for computing
services), which in addition to giving flexibility to the contracting system will op-
timize the provider’s profits. At the same time it will maximize the customer’s
satisfaction and the ability to be flexible. We are developing a negotiating tool
(SLA Negotiation Manager) described hereafter along with the process of nego-
tiation and creation of a SLA from existing business objectives. The Negotiation
Manager is a truth based system and it has a system-wide objective of computing
an efficient cost-gain relation. Our goal is to provide an interactive negotiation
system that would help a service provider to formulate and evaluate an offer, and
then send that offer to the client.

Employing Intelligent Agents to Automate SLA Creation 39

The main module of our system will be dedicated to automate processes on
behalf of service provider. The overall negotiation process will be modeled as ex-
changing proposals and counter-proposals between the provider and the customer.
Figure 2 presents a state diagram for a negotiation process.

Each negotiation starts with the customer choosing one service offer from a
pool of predefined service packs. Usually such offer depends on service price, deliv-
ery, quality etc. The initial offers can be pre-defined and stored in a repository or
they can be automatically generated by using existing SLOs and current system’s
state.

Figure 2. Negotiation Process State Diagram

The provider takes all factors into account and calculates the expected pay-off
value function associated with possible offers, and selects the offer that maximizes
its payoff. When satisfied with an offer, the customer (client) just sends an accep-
tance message to the provider and a SLA is finalized. In Figure 2, the transition:

1 → 2 → 3 → SUCCESS

presents such process. If not accepting the first offer, then the client can either
abort the negotiations:

1 → 2 → 3 → FAIL

or can send a counter - proposal:
1 → 2 → 3 → {4 → 3}

At this point the service provider evaluates an offer and updates its knowledge
about the customer. If the offer is acceptable the Negotiation Manager creates an
SLA, otherwise provider sends counter-proposal. Exchange of counter-proposals
continues until one of the parties decides to accept an offer or quit. The state
SUCCESS or FAIL has to be reached. The essential work in creating SLOs takes

40 Kaminski and Perry

place in the business/marketing department. SLOs should aim at achieving the
best performance possible, but representing true and real values at all times.

6. Implementation

In our system resource specific knowledge inclusion should eliminate many of the
inefficiencies in SLA creation. By using templates and SLO libraries SLA Negoti-
ation Manager will ease the contract creation. Our system makes the use of the
widely approved contract language Web Service Level Agreement (WSLA). It also
provides a user friendly interface for the client to see and choose requested ser-
vices as well as enabling the exchange of counter-offers. It is anticipated that the
contract creation time will be reduced significantly as a result of the usage of tem-
plates and pre-approved clauses. By using our system the service provider will be
able to ensure consistency and compliance with company’s standards. Storing all
SLAs in a single repository will provide an additional benefit to the service plan-
ning and management tools, so that it is required to search for a contract in only
one place. In the SLA creation process, a client is presented with the services that
are offered by the provider. Based on the customer’s choice the Negotiation Man-
ager aggregates and combines these choices into various SLA parameters, chooses
service levels (SLO) for every SLA parameter. Every SLA has to be checked for
the resource availability because it defines the agreed level of performance for a
particular service. This process is also known as compliance monitoring. It has
been our attempt to teach the SLA Negotiation Manager the business knowledge,
goals, and policies of the party it belongs to. Such knowledge enables the system
to choose and combine the set of SLOs that should be specified in the SLA in
order to ensure compliance with the business goals.

In [7] it is shown that there are five main components of an enterprise Con-
tract Lifecycle Management strategy:

1. automated contract creation,
2. secure contract negotiation,
3. electronic contract repository,
4. automatic upload of relevant contract data to back-end systems,
5. generation of proactive management reports and alerts to encourage compli-

ance to committed contract terms and conditions.

It is our goal to provide the first four out of the above five directives in the
SLA Negotiation Manager. Our system will automate contract creation through a
secure negotiation with the customer, then newly created SLA will be stored in a
central repository and the back-end system logs will be updated for the usage of
resources that are specified in the contract. As for the last component, we leave
the generation of relevant reports to the service management tools.

Employing Intelligent Agents to Automate SLA Creation 41

6.1. System dependencies

Every SLA consists of at least two signatory parties: the service provider and the
customer (client). Both service provider and a client can have multiple SLAs in
their internal company’s repository. Each SLA can consist of multiple SLOs. There
is at least one SLO for each service offered.

As an illustration of these type of situations, hereafter is a typical scenario
of a retail store that needs a front end billing transactions handled.

A customer finds a service description and relative URL in the business direc-
tory (e.g., UDDI). Then it connects to the company that offers the service. Upon
such connection an SLA Negotiation Manager is started. The customer wants to
subscribe to a particular service (for example: store customers’ billing system).
The customer knows that to be successful it needs to have an access to software
that can handle 10,000 transactions per day, with an initial transaction response
time lower than 5 seconds and the average transaction time not longer than 60
seconds.

Figure 3. Use case diagram for negotiation scenario

The customer is willing to pay $800/month for such service. The SLA Ne-
gotiation Manager by examining existing SLOs and existing SLAs checks if such
service is available (checking of the existing SLAs is done in order to avoid over-
commitment). If the provider’s company can provide a service required then a SLA
is created accordingly and presented to the customer for an acceptation.

Upon customer’s acceptance, the SLA is stored into the repository and the
service is made available to the client. It is anticipated that at this point a SLO
defining a service of renting a hardware capable of performing 10,000 transactions
per day would have to be removed from a resource pool to avoid over-commitment.

42 Kaminski and Perry

This is the best case scenario. Often, the service provider can not commit
to the requested service and then the SLA Negotiation Manager would come up
with the next best offer. Such decision making might be based on asking customer
how much money it is willing to spend or how many transactions its store must
absolutely have and based on that and on knowledge of the system the Negotia-
tion Manager can propose a number of options to choose from. The offer can also
depend on other parameters as well. Maybe the provider can commit to 10,000
transactions, but the upper limit on the average transaction time will be 90 sec-
onds. One option might be an offer of 8,000 transactions per day with the initial
response time lower than 10 seconds and an average transaction time of less than
60 seconds for $650.00/month and/or another offer could be 12,000 transactions
per day with the initial response time lower than 5 seconds and the average trans-
action time of 3 minutes for $1,000.00/month. Ideally the customer chooses one
of the offers and a SLA is created. If the customer does not agree to the proposed
service then negotiation continues.

6.2. Negotiation Manager Model

An Automated Negotiation Manager model is a 7-tuple: { R, K, Z, P, Q, F, M }
where:

R is a set of participants,
K is a set of all possible agreements (SLAs),
Z is a set of business rules,
P is a set of all SLOs,
Q is a set of all negotiation sequences,
F is a utility function,
M is a set of all possible offers.
1. R is a set of participants. This set contains all parties that can be involved

in the contract. The customer, service provider and all supporting parties belong
to this set. At least two elements of this set (service provider and customer) must
participate in any SLA negotiation process qn Q.

2. K is a set of all possible agreements (SLAs). Every existing SLA agreement
that is stored in a data base belongs to the set K. It also contains all the possible
agreements that can be created as a result of any successful negotiation process.

3. Z is a set of business rules (also called business knowledge). A business rule
that a service cannot cost less than $0.07 per transaction might be an example
of zi Z. Set Z represents corporate preferences and aligns business strategies of a
service provider.

4. P is a set of all SLOs. Every SLA contains at least one SLO for the agreed
service.

5. Q is a set of all sequences s, such that every s =q1,q2,q3 . . . qn where
qi is an action (an offer, a counteroffer, accept or decline). Each s illustrates a
negotiation process and every successful negotiation is a finite sequence s. Here,
by successful negotiation we mean any negotiation process that resulted in either

Employing Intelligent Agents to Automate SLA Creation 43

accept or decline. Sequence s can also serve as a history log when stored in a
repository. The past negotiation procedure can be recreated from such sequence.

6. F is a utility function. This function is customized according to the negoti-
ating party needs and business preferences. For example it might be widely known
that the customer offers 10% less for the service than it is really willing to pay.
Function f might be used to calculate next offer: f = current offer - 10%.

7. M is a set of all possible offers. Every permutation of elements of P belongs
to M. In addition M contains any combination of an offer that has been modified
according to one or more business rules from set Z.

There have been many mathematical models developed for negotiations, typ-
ically on direct e-commerce negotiations, and often employing game theory algo-
rithms [8, 9]. Although these are not directly applicable to the SLA environment
where there are a great deal more factors to consider above the product and price,
they are useful for further development of the negotiation system.

A key factor for a Negotiation Manager is the ability to operate in an open
environment where the preferences of a client are not known and we can only
assume using a common knowledge that client’s goal is to get more of a service
for less money. This comes from the fact that customer’s needs may go beyond
specialized capabilities of any single service offerings. Moreover, the participating
parties’ legacy environments have to be incorporated seamlessly into the system.
The Negotiation Manager design will follow the framework of a computational
mechanism design which is an aggregation of a game theory, artificial intelligence
and algorithmic theory. Mechanism design problem is to implement a system wide
solution to a decentralized optimization problem with an intelligent agent repre-
senting the service provider and a customer who has private information about its
preferences for different outcomes.

6.3. Negotiation Mechanism

A negotiation mechanism design is to define the possible strategies and a method
used to select an outcome based on client’s type and preferences. A negotiation
mechanism:

M = (Σ1, . . . ,Σn, g(.))

defines a set of strategies Σi available to the negotiation agent, and an out-
come rule:

g : Σ1 × Σ2 × · · · × Σn → O, such that g(δ) is the outcome implemented by
mechanism for strategy profile δ = (δ1, . . . , δn)

All of the SLA’s components and SLA itself has to be translated into the
machine readable format. There are several such specifications resulting from on-
going research at the large software companies such as HP, Sun Microsystems and
IBM [10, 11]. For our model we have chosen WSLA expressions. WSLA is based
on Extensible Markup Language (XML), and it has the ability to define and de-
scribe computing services along with quality of service and service performance
parameters. In addition XML is a very flexible text format that was originally

44 Kaminski and Perry

Figure 4. Process of creating an SLA

designed to meet the challenges of large-scale electronic publishing, and it can be
easily extended to meet one’s needs. WSLA is defined as an XML schema there-
fore the resulting SLOs can be easily translated into system-level configuration
and stored in the machine readable format to be used by various system services
such as SLA Negotiation Manager. We do not discuss SLOs creation in this paper
as this is a research topic of its own, and the scope of this paper does not allow
for an elaboration on this process. Here we assume that SLOs are developed by
the Business/Marketing department and have already been defined in WSLA.

In our scenario there are two sides of the negotiations. One side, a service
provider, has a repository of SLOs that define limits of the resources offered and
the cost for each service, and on the other side there is a customer, who also has to
define thresholds for acceptable service performance and the price that it is willing
to pay.

In our automated SLA Negotiation Manager the system will provide the
compliance monitoring according to the customers choices. A base framework for
SLA negotiation model is presented in Figure 4.

6.4. Service Process Explained

It is very common that the service providers list their service offers in some business
directory such as UDDI. A potential customer can find such listing on the web
and locate the service. For the clarity of this paper we will continue with our
retail store customer who needs hardware and necessary network connections to
provide a store front sale billing functionality. Upon the client’s choice of a specific
vendor (or a specific service) the SLA negotiation manager will be executed. Figure

Employing Intelligent Agents to Automate SLA Creation 45

6 shows a sequence diagram for the SLA creation scenario. Let the application
SellSolution serve as an example here.

A financial institution, offers a Web service to private and corporate store
owners to perform a number of different types of store transactions (such as bank
account transfers, credit card payments, returns, store credit option) and gener-
ate the statements needed for tax related and bookkeeping purposes. It is a web
service on demand (also called utility service) where the customers can be billed
for services used. The computing resource is SellSolution that allows for billing
transactions on demand. A potential customer might be a large corporation that
has a variety of different types of transactions; a medium size store that uses store
credit card charges; or a single private store owner who only wants to use bank
account debit charges.

The billing rate might be based on number of transactions, transaction time
and/or availability to the customer. In our example the SellSolution has four SLOs
specified for different performance levels: platinum, gold, silver and bronze (Shown
in Table 1). Every level depends on a number of transactions being performed. The
platinum level has an unlimited number of transactions, but instead is bounded
by the response time and transaction time.

In our model, every customer no matter how small or how large of an en-
terprise will be able to take advantage of an automatic SLA creation through our
SLA Negotiation Manager. The resulting SLA will be based on the SLOs of the
business, and created according to WSLA specifications, which in turn will make
them readable for other system utilities such as performance manager or service
level manager.

7. Conclusion

Even though the software has been around for decades, with passage of time, the
complexity of it simply increases. The latest studies show that computing services
in combination with software on demand might provide solution for an enterprise
level architecture.

Our paper presents a unique approach to the creation of Service Level Agree-
ments. In practice constructing an SLA requires planning and care. While the pro-
cess can vary among companies, it is often a politically oriented topic. SLAs are
known to be used to find blame instead of being a driving force towards a positive
change. There is a lot more to SLA Management tools than XML schemas and
standards. The combination of information and contract negotiation procedure
plays an important role. The system presented in this paper will provide an auto-
mated way to create and document SLAs which in turn will increase web service
provider’s profits, maximize customer satisfaction, and it will open up the way to
more flexible service provision.

46 Kaminski and Perry

References

[1] Christopher Ward, Melissa J. Buco, Rong N. Chang, Laura Z. Luan, Edward So,
Chunqiang Tang “Fresco: A Web Services based Framework for Configuring Exten-
sible SLA Management Systems” Proceedings of the IEEE International Conference
on Web Services (ICWS’05) 11-15 July 2005 Pages: 237 – 245 vol.1

[2] Buco M.JU., Chang R.N., Luan L.Z., Ward C., Wolf JL., Yu P.S. “Utility computing
SLA management based upon business objectives” IBM Systems Journal Vol. 43
No.1 2004 p.159.

[3] Suh, Bob. “Avoiding an Austerity Trap” Outlook Journal, February 2004
http://www.accenture.com/Global/Research_and_Insights/By_Subject/High_

Performance_Business/AvoidingtheAusterityTrap.htm

[4] Leopoldi, R. “IT Services Management, A Description of Service Level Agreements”,
White Paper, RL Consulting, 2002 Retrieved from: http://www.itsm.info/SLA%

20description.pdf on June 22, 2005

[5] Sturm, Richard. “Service Level Objectives”, Network Word Fu-
sion, 2002 Enterprise Management Associates, Inc. Retrieved from:
http://www.slminfo.com/articles/slobjectives.htm on Dec 12, 2005

[6] Gualtieri Andrea, Ruffolo Massimo, ”An Ontology-Based Framework for Represent-
ing Organizational Knowledge”, Proceedings of I-KNOW ’05 Graz, Austria, June 29
- July 1, 2005

[7] Weintraub Allan, “Contract Management – A Strategic Asset” CRM Today website,
http://www.crm2day.com/highlights/EEplVVVFlpFCMLrUcN.php

[8] Zeng, D., and Sycara, K. “Bayesian Learning in Negotiation” Working Notes of the
AAAI 1996 Stanford Spring Symposium Series on Adaptation, Co-evolution and
Learning in Multiagent Systems

[9] Oprea M., “An Adaptive Negotiation Model for Agent-Based Electronic Commerce”,
Studies in Informatics and Control, Vol.11, No 3, September 2002

[10] Dan, A., Ludwig, H., Pacifici, G., “Web Service Differentiation With Service Level
Agreements”, White Paper, IBM Corporation, March 2003, http://www-106.ibm.
com/developerworks/library/ws-slafram/

[11] Sun Microsystems, “Using the Sun ONE Application Server 7 to Enable Collab-
orative B2B Transactions” Informit Network Website, http://www.informit.com/
articles/article.asp?p=100664\&seqNum=2\&rl=1

Halina Kaminski
Department of Computer Science
University of Western Ontario, Canada
e-mail: hkaminsk@csd.uwo.ca

Mark Perry
Department of Computer Science
University of Western Ontario, Canada
e-mail: markp@csd.uwo.ca

Whitestein Series in Software Agent Technologies, 47–64
c© 2007 Birkhäuser Verlag Basel/Switzerland

A Flexible Approach to Service Management-
Related Service Description in SOAs

Christian Schröpfer, Marten Schönherr, Philipp
Offermann and Maximilian Ahrens

Abstract. In order for service-oriented architectures (SOAs) to deliver their
true value for the business, e.g. flexibility and transparency, a holistic service
management needs to be set up in the enterprise. To perform all the ser-
vice management tasks efficiently heavy support by automated processes and
tools is necessary. This article describes a service description approach that is
based on OWL-S (Web Ontology Language for Services) and focuses on non-
functional criteria. It starts with the necessary service management tasks and
explains non-functional data elements and statements for its automated sup-
port. After covering related work it explains the proposed flexible extension
to OWL-S. This extension is twofold. Firstly, simple service lifecycle elements
are added using the normal extension mechanism. Secondly for adding QoS
(Quality of Service) capabilities, the approach combines this extension mech-
anism with UML (Unified Modeling Language) Profile for QoS. A prototype
delivers the proof-of-concept.

Keywords. Service-oriented architecture, semantics, service description, QoS
(Quality of Service), service management.

1. Introduction

In the last years, a lot of work regarding practical usability of technologies in
the SOA (service-oriented architecture) area and especially Web services area has
been done. Research work is more and more shifting from the technical areas
like reliability and security to the business layer. One of the problems is the op-
erational management – or IT service management – of an actual, implemented
service-oriented IT landscape in the enterprise. ITIL (IT Infrastructure Library,
see http://www.itil.co.uk/) is a general and widespread IT service management
framework. Being a de-facto standard, many other service management frameworks
are based on it [1]. Among others, it covers best practices along two areas, Service

48 Schröpfer, Schönherr, Offermann and Ahrens

Support and Service Delivery including configuration management, incident man-
agement, problem management, change management, release management, service
level management, capacity management, availability management, IT continuity
management, and financial management [1]. Part of the “IT service management”
within the SOA is the “service component management” which deals specifically
with managing the service components, e.g. Web services, during their lifecycle.

Due to the special characteristics of an SOA, its operational management
is different from managing mature architectures. Additional requirements need to
be covered. In an SOA, the implemented Web services are most likely much more
fine granular than “normal” applications. In one landscape, there exist services
that offer similar functionality and have different lifecycle stages. A high num-
ber of services need to be managed while a high reuse rate is a primary goal. At
the same time in order for SOA to deliver its advantages, changing services and
their orchestration should be easily possible. When managed without automated
processes, tool support, and centralized repositories, these conditions can lead to
confusion and chaos. The contrary of the original goals of SOA, among others
more flexibility and more efficient IT, would be the outcome. Hence, an effective
and efficient service management framework for SOAs is needed that is supported
by automated processes and tools. The following SOA-specific functional blocks
should be covered: service definition, service deployment lifecycle, service version-
ing, service migration, service registries, service message model, service monitor-
ing, service ownership, service testing, and service security [2]. They represent
SOA-specific functionality in the broader area of the ITIL processes. Reference [3]
highlights the importance of service description and in particular non-functional
service description for managing SOAs and mentions in addition service discovery,
substitution, and composition. Modeling functional and non-functional informa-
tion in a machine-readable and semantically enriched way is a basis for a highly
automated management of SOAs and in a broader sense of IT service management.

This article looks at a flexible service description approach to non-functional
information. In Web services technology, UDDI repositories (Universal Description,
Discovery, and Integration) and WSDL (Web Services Description Language) are
used for service publication, discovery, and description but do not provide the
necessary semantic functionality. Compared to the functional area less work has
been done in the area of semantically enriched non-functional service description.
Hence, this paper especially deals with the latter part. The approach builds on
OWL-S (Web Ontology Language for Services). The two aspects that form the
basis in the non-functional area are service lifecycle information and QoS (Quality
of Service) guarantees offered by a service. Hence, it is necessary to look at semantic
Web service description standards in general as well as description standards in
the QoS domain.

The remainder of this paper is organized as follows: In section 2, the require-
ments for describing services are examined. Section 3 gives an overview over the

Service Management-Related Service Description in SOAs 49

related work. Section 4 describes the extensions to OWL-S and section 5 the pro-
totype. Section 6 describes the importance of this approach for matching, SLA
negotiation, and SLA enforcement.

2. Requirements for Service Description

2.1. Requirements Overview

In order to support the above mentioned activities, like semi-automatic discovery,
service level management, and service migration, several types of information need
to be modeled within the service description. The following two sections describe
requirements for service description regarding information relevant for service life-
cycle management and QoS guarantees. Two aspects have to be considered, the
content and the type of statements that can be modeled. The lists contain the most
obvious points in both aspects. However, they can not be regarded as complete.
The available sources, e.g. [3], [4], [5], and [6], describe very different non-functional
characteristics. In order to be future-proof, the approach must allow for extension
of both ontological terms and structure of statements used for description. Build-
ing on this extensibility, domain specific models can be built that capture most
requirements relevant for the domain.

2.2. Information Relevant for Service Lifecycle Management

In the area of service lifecycle management, the following most obvious information
should be covered as a starting point:

1. Service name
2. Service categories
3. Versioning information
4. Lifecycle status (“Planned”, “Design”, “Test”, “Pilot”, “Active – intensive

maintenance”, “Active – regular maintenance”, “Sunsetting candidate”, “Sun-
setting in progress”, “Sunsetted”) (based on [2], extended)

5. Service provider information
6. Infrastructure the service runs on: server name, configuration management

ID, etc.
7. Link to source code
8. Different responsibilities, roles, persons, e.g. for business aspect or mainte-

nance
9. Link to further business description of the service

10. Pricing information (depending on QoS class)
For lifecycle management, the following obvious statement structures should be
covered as a starting point:

1. Parameters with simple values, e.g. versioning information
2. Parameter names with RDF (Resource Description Framework) pointers to

terms from predefined ontologies or resources (configuration database IDs for
related infrastructure). Technically, this includes 1.

50 Schröpfer, Schönherr, Offermann and Ahrens

3. Tabular expressions, e.g. listing responsibilities for several areas
4. Free textual statements for a human reader

These statements are not very complex. As shown later, they can be realized
relatively simply with OWL-S extensions. Free textual statements are introduced
(also for the QoS) because we assume that in the first step it is not reasonable to
put semantics behind every statement for automatic processing. Rare statements
should be left for a human being to work with.

2.3. QoS Guarantees

Table 1 exemplarily describes QoS characteristics to be modeled in the service
description.

The following structures of QoS statements should be supported as a basis
to facilitate rich QoS specification in service description:

1. Boolean statements, e.g. “Component is Basel II certified – yes/no.”
2. Absolute requirements, e.g. “Reliability should be at least 99.9%.”
3. Composed requirements, e.g. “On weekdays, between 7am and 8pm, availabil-

ity should be 99.9%; Otherwise, reliability should be 99%.”
4. Level statements, e.g. “The QoS requirements as defined in level ’Gold’ should

be complied with.”
5. Percentile statements, e.g. “In 95% of the cases, response time should be

below 10 ms.”
6. Free textual statements for a human reader

In addition, it should be possible to specify several sets of QoS guarantees (QoS-
level) with added price tags for one Web service that can be referred to during
SLA (Service Level Agreement) negotiations.

3. Related Work

3.1. Standards for Service Description

A number of standards have evolved in the area of semantic service description.
A quite mature one by now is OWL-S. OWL-S is an upper ontology language
developed by the Semantic Web Services arm of the DAML (Darpa Agent Markup
Language) program [7, 8]. Using OWL-S, it is possible to describe Web services,
their properties, and capabilities in a semantically enriched form. Given this, we
have chosen OWL-S as the basis for our service description approach for two
reasons. First of all, it is based on OWL, a well established ontology language.
Secondly, there are robust tools available for working with OWL ontologies as
well as with OWL-S service descriptions. Both reasons support the intention of
this article to show that, based on today’s technology, standards, and tools, a
reasonable basis for service management can be realized.

Other relevant semantic Web service description standards are WSMO (Web
Services Modeling Ontology) and WSDL-S (WSDL with semantic extension).

Service Management-Related Service Description in SOAs 51

Table 1. QoS information

WSMO is a part of the WSMF (Web Services Modeling Framework) [9]. Its dis-
tinctiveness lies in its capability to import ontologies specified in other ontology
languages, among others OWL, its usage of mediators bridging the gap between
different Web services, as well as its goal concept describing functionality and
interfaces from a user perspective.

WSDL-S heavily leverages the existing standard WSDL and is focused on
compatibility [10]. It also is very flexible with respect to ontology languages (e.g.

52 Schröpfer, Schönherr, Offermann and Ahrens

OWL) and mapping languages. However, being so flexible it is also more generic
than WSMO and OWL-S.

3.2. QoS-Specific Standards – UML Profile for QoS

Specification of QoS characteristics is an important topic in the area of IT systems.
The existing standards can be grouped according to their main focus: software de-
sign/process description (e.g. UML Profile for QoS and QML – QoS Modeling
Language [6]), service/component description (e.g. WS-Policy), and SLA-centric
approaches (e.g. WSLA – Web Service Level Agreements [11] [12], WSOL – Web
Service Offerings Language [13], SLAng – Service Level Agreement definition lan-
guage [14], and WS-Agreement [15]). A good overview over most of them can be
found in [4].

Several languages have been developed to support SLA negotiation and spec-
ification in a service provider/service requestor scenario. The SLA-centric ap-
proaches are very much linked to the problem of QoS characteristics specification.
The difference to other QoS specification languages is that they are more targeted
towards SLA negotiation, specification, and SLA management.

UML Profile for QoS is a comprehensive framework for modeling QoS require-
ments and offerings in UML models. It extends the reference UML 2.0 meta-model
mainly by using stereotypes. The current specification was published by OMG (Ob-
ject Management Group) in May 2006 [16]. Originally it has been developed for
software engineering of object-oriented systems. This article shows that it is also
applicable to service description. UML Profile for QoS uses the following approach
for QoS description. It describes a QoS model specific to the respective domain
separately from the actual elements to be annotated. Then in the actual UML
model the elements can be annotated using terms defined in the QoS model.

There are several reasons for choosing UML Profile for QoS for the extension
of OWL-S. Firstly, it comes with its own general catalog of QoS characteristics
which is not domain- or project-specific. Secondly, it can be well integrated with
business process modeling which is part of the Web services matching problem.
Thirdly, compared to other specifications, UML Profile for QoS is quite mature
and has been accepted by OMG as a standard. Its definition goes back to a thesis
by J. Aagedal published in 2001 where a lot of other QoS-related work has been
considered [17].

3.3. Approaches to Semantic Service Description, Discovery, and Selection

Roy Grønmo and Michael C. Jaeger propose a methodology for Web service com-
position using QoS optimization [18]. The main focus of their article is on a match-
making algorithm that uses QoS requirements and offerings for achieving better
results. For both, they use UML Profile for QoS. Other than in this article, they
use a link from the WSDL operations to a document describing the QoS offerings.

Reference [4] proposes to have functional as well as non-functional specifica-
tions in separate repositories. By contrast, we recommend to use a single reposi-
tory, since we do not see the necessity that a separate organization specifies the

Service Management-Related Service Description in SOAs 53

QoS characteristics. In fact, the functional and non-functional properties should
be guaranteed together either by the organization itself or a third party. The third
party could then be a trusted entity that is responsible for monitoring service levels
or even for delivering the service levels itself.

Reference [5] describes a framework and ontology for dynamic Web services
selection. It uses an agent-based system to support dynamic service selection and
QoS ontologies for describing the non-functional characteristics. Although the ap-
proach covers QoS very extensively and comes with a realistic example, it has
shortcomings. It uses its own service ontology which makes it proprietary. Also,
semantic description of service lifecycle information and functional service descrip-
tion is not explicitly covered by the approach.

WS-QoS is a framework that allows the definition of QoS requirements as
well as offerings for Web services and provides an infrastructure for managing
those QoS-aware Web services. WS-QoS is based on a WS-QoS XML schema and
can be extended. Although it is compatible with UDDI and WSDL by using their
extension mechanisms, it is a proprietary approach when it comes to the QoS
specification [19].

In [20], Klein and König-Ries present a process and a tool for describing
services based on DAML-S. A layered set of ontologies is used and instantiated
in a specific service description with the tool. The service description does not
specifically deal with service management requirements. In [21], Klein, König-Ries,
and Müssig develop an alternative service description language, called DIANE
Service Description (DSD) that implements additional requirements that are not
covered by OWL-S and WSMO. However, in this article we want to rely on current
standards and existing tools as much as possible.

Matching, i.e. service searching, ranking, and selection, is an interesting ap-
plication of semantically enriched service description. A lot of work is going on in
this area. Apart from functional information also the non-functional information
is important to be considered as the already mentioned sources [18] and [5] show.
However, functional matching is usually the first step to find appropriate services.
The recently published OWLS-MX matcher uses a hybrid approach, combining
logic-based reasoning and approximate semantic matching, in particular content-
based information retrieval techniques for the input and output parameters spec-
ified in the service profile of OWL-S [22].

4. Extension of OWL-S

The following section describes the proposed extension to OWL-S with respect to
service lifecycle management and QoS.

54 Schröpfer, Schönherr, Offermann and Ahrens

Listing 1. Definition of ServiceVersion in OWL-S

4.1. Extension for Service Lifecycle Management

Extension of OWL-S happens in the ServiceProfile, one of the four classes OWL-S
uses. It is targeted at describing functional and non-functional aspects for ser-
vice discovery. For the functional description Parameter, Input, Output, Condi-
tion, Result, and Process are used. The first five refer to the process description in
ServiceModel. For the non-functional description the following properties/classes
are interesting: serviceClassification, serviceProduct, serviceName, textDescription,
ServiceCategory, and ServiceParameter. The first five can be used for the require-
ments mentioned as they are. The Web service can be classified using serviceClas-
sification (mapping to an OWL ontology of services, e.g. NAICS – North American
Industrial Classification System), serviceProduct (mapping to an OWL ontology of
products, e.g. UNSPSC – United Nations Standard Product and Services Classifi-
cation), as well as ServiceCategory (mapping to taxonomies potentially outside of
OWL or OWL-S). A semantic name can be given to a service using serviceName.
Free text descriptions can be represented with textDescription.

Especially important for the extension is ServiceParameter. With this ele-
ment the remaining additional service lifecycle characteristics are defined (Table
2). Future extensions also can be realized using ServiceParameter.

ServiceParameter consists of the serviceParameterName, the actual name of
the parameter, defined as literal or URI, and sParameter a link to the value within
an OWL ontology. Listing 1 shows the definition of ServiceVersion in OWL-S as
an example. VersionName and VersionNumber are defined as datatype proper-
ties (type xsd:string and xsd:float) of the class ServiceVersionInfo (subclass of
owl:Thing). Listing 2 shows the ServiceVersion information in OWL-S in a ser-
vice description for a logistics Web service CalculateRoute. ServiceVersion 10 and

Service Management-Related Service Description in SOAs 55

Table 2. Defined elements for service lifecycle management

ServiceVersionInfo 11 are instances that contain the actual version information
“Snake” and “5.1”.

4.2. Extension for QoS with UML Profile for QoS Description

Section 2.3 gives a flavor of what the level of complexity needed is when describing
QoS offerings. It shows that a comprehensive and extensible QoS framework that
builds on extensive experience needs to be leveraged. UML Profile for QoS is such a

56 Schröpfer, Schönherr, Offermann and Ahrens

Listing 2. Instance of a service description for CalculateRoute
with details for ServiceVersion

framework that suffices the requirements. Hence we propose to use UML Profile for
QoS together with OWL-S to bring QoS functionality to Web services description.

The QoS model does not have to be defined in OWL-S. Its definition remains
in UML and can be reused for other services and systems. This is very much in
line with the idea of using the same QoS notation on the business process side as
well as on the service description side to facilitate service level negotiation. The
stereotypes QoS Characteristic and QoS Dimension are used in the QoS model
to specify respectively quantify aspects of QoS. It is possible to use statistical val-
ues (maximum value, minimum value, range, mean, variance, standard deviation,
percentile, frequency, moment, and distribution) as well as to express preferences
about the direction when comparing or optimizing parameters (increasing or de-
creasing).

For annotating the elements with QoS requirements and offerings UML Pro-
file for QoS uses three types of constraints: QoS Required, QoS Offered, and QoS
Contract. QoS Required and QoS Offered describe required and offered limitations
of QoS Dimensions for annotated elements, either by listing the allowed elements
or by stating the limits. QoS Contract can be used for agreed limitations. Different
QoS levels supported by a system, which can be used in SLAs, can be defined with
QoS Level.

OCL (Object Constraint Language) expressions are used in the QoS state-
ments. This enables rich expressions as those mentioned in 2.3. The respective QoS
Characteristic is indicated in the annotation statement via context. An example
QoS Offered statement in OCL is shown below: “From Monday to Friday 8:00am

Service Management-Related Service Description in SOAs 57

Figure 1. Example QoS requirements in a UML Activity diagram

to 8:00pm, the response time can be guaranteed to be below 10 ms.”

<<QoSOffered>> {context Time_Performance inv:
(Set{’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’}
->includes(getToday()) and getCurrentTime() > ’8:00’
and getCurrentTime() < ’20:00’) implies responseTime < 10}

Introducing such QoS annotations into the OWL-S service descriptions can
simply be done by adding QoSCharacteristics as a new ServiceParameter in Ser-
viceProfile and QoSStatement as a subclass of owl:Thing. QoSStatement has the
datatype property statement of the type string. This field contains the QoS con-
straints in OCL of the element to be annotated. Figure 1 shows example QoS
requirements on the service requestor side in a UML Activity diagram. respon-
seTime of GetCreditService is required to be lower than 10 ms. Listing 3 shows
the corresponding QoS offering in the service description of GetCreditService that
would be a match during service matching.

5. Service Management Prototype

5.1. Overview – Architecture and Functionality

The first version of the prototype is a combination of self-developed systems and
available open source tools. It is realized as a web application and contains a web
browser-driven user interface and two service repositories, one for the standard
UDDI publishing and discovery, and one for the semantic search. Two repositories
are necessary because the OWL-S-based repository is not UDDI standard com-
pliant, while UDDI as the current standard for service repositories does not offer

58 Schröpfer, Schönherr, Offermann and Ahrens

Listing 3. QoS offering for GetCreditService in the service description

semantic support. The UDDI registry can be filled automatically with the infor-
mation from the OWL-S repository. In order to make that possible, a mapping for
many of the repositories’ elements has been defined.

Figure 2 gives an overview of the prototype’s architecture which is structured
in 3 layers. The first layer is the web client and client application. It contains the
user interface as a web browser application. Via this web-based front-end the user
has access to the functionality described in the next section. User authentication
functionality as well as storing the account information in a database is imple-
mented here. The client accesses the UDDI and OWL-S repository on a web ap-
plication server via SOAP, the standardized XML-based message exchange format
for Web services. The UDDI repository is based on jUDDI as persistence layer.
The OWL-S repository builds on Jena, a semantic web service framework, for
the semantic support. Jena facilitates the usage of internal and external reasoners
and access to the database via RDQL (Resource Description Framework Query
Language) [23]. The prototype uses it for interfacing with the database where
the semantic description is stored and for performing several operations on the
ontology database, in this case MySQL. The prototype itself is written in Java.
It uses RMI (Remote Method Invocation) for communication between the Java
components.

Apart from the self-written parts, the prototype uses the readily available
packages Protégé, Protégé-OWL, and OWL-S Editor. Protégé is a free, open source
ontology editor from Stanford University [24]. Protégé with Protégé-OWL, a plug-
in for defining ontologies in OWL, also from Stanford University (available at [25]),

Service Management-Related Service Description in SOAs 59

Figure 2. Overview of the service management prototype

is used for the taxonomy definition. OWL-S Editor is a Protégé plug-in developed
at SRI International (available at [26]). It helps to define services in OWL-S by
making available the OWL-S ontology with its predefined elements and a special
view on the service, profile, grounding, and process instances.

5.2. Functions and Methodology of the Prototype

The first version of the prototype supports the following tasks as a basis for the
mentioned service management responsibilities: taxonomy/ontology definition, ser-
vice description, semantic annotation, service registration, service discovery, ser-
vice review, and user access control.

5.2.1. Taxonomy/Ontology Definition. The mentioned additions to the OWL-S
ontology can be made with the OWL Editor adding new ServiceParameter and
owl:Thing subclasses. Later, service descriptions and ontology extensions can be
done using the OWL file. Also, a taxonomy for the service category field and
input/output parameters can be developed with Protégé OWL. The generic way
of defining/redefining the service taxonomy is an important feature. It is a matter
of fact that there is no stable service description in complex environments.

5.2.2. Service Description and Semantic Annotation. Service description and se-
mantic annotations are done with the OWL-S editor by loading the OWL file that
contains the ontology extended by the above mentioned elements. It is possible
to import existing WSDL descriptions. Once the extended OWL-S ontology is

60 Schröpfer, Schönherr, Offermann and Ahrens

loaded, the services can be described. For specifying a parameter for a service, the
predefined ServiceParameter has to be used. There are two ways of doing this. If
the parameter contains listed elements, e.g. ServiceLifecycleStatus, a link to an ex-
isting instance can be used. If the parameter contains an element with free content
like a number or a text field (e.g. ServiceVersion), a new parameter value instance
has to be created. Apart from the non-functional elements, it is possible to seman-
tically describe the input/output parameters using normal OWL-S functionality
and the service parameter ontology defined.

5.2.3. Service Registration. Service registration is done by importing the OWL-S
service description into the prototype and its database. This is necessary after each
change to it. The prototype can then perform the search activities laid out in the
next section.

5.2.4. Service Discovery and Review. The main functionality of the prototype is
search functionality across the services registered and described. There are several
possibilities for performing searches using the additional semantic information:

1. Simple queries – searching for services, input/output parameters, taxonomy
expressions, etc. using the full names of these elements

2. Semantic queries for services using their input and output parameters
3. Semantic queries for services that match other services’ input or output pa-

rameters
4. Semantic queries for services using taxonomy elements
5. Semantic queries using the other additional parameters such as ServiceVer-

sion, ServiceResponsibility, and ServiceLifecycleStatus
6. Taxonomy tree search – services that belong to one taxonomy can be found

by navigating through a simple taxonomy tree (uses Tigra Tree Menu [27])
or a hyperbolic graph (uses HyperGraph [28])

Number 3 refers to a simple matching functionality that can be used for service
orchestration and will be extended in the future. To increase the flexibility of the
search, it is possible to use the outcome of one search run as the basis for another
search.

5.2.5. User Access Control. For service management in complex environments it
is absolutely necessary to support role-specific views combined with access rights
management. The numerous services are the core of an IT system of an enterprise.
Therefore they need to be protected against malicious attacks as well as erroneous
and uncoordinated activities of careless or unaware users. Hiding unnecessary in-
formation improves usability, reduces the number of errors, and is sometimes a
must when it comes to confidentiality. The prototype’s user authentication module
controls the activities of individual users according to the rights associated with
their roles. An “Administrator” can add new accounts and associate them to a
role. “Users” are only allowed to search and browse through the service repository.
“Developers” can in addition perform detailed search operations. The “Architect”
is also allowed to register and delete services in the repository.

Service Management-Related Service Description in SOAs 61

6. Importance for Matching, SLA Negotiation and Enforcement

Currently, the search needs to be done manually. Having visibility about all ser-
vices implemented and the possibility of managing meta-information of the services
centrally and thus in a consistent way is a big advantage and a precondition for
the success of an SOA. However, if the IT systems based on the services get bigger
and bigger and the number of services is expanding, a process that includes more
automated support is necessary. The semantic description of input and output
parameters and non-functional characteristics is a prerequisite for that. Only if
service requestor and service provider refer to the same ontological concepts, the
service matching module can “understand” them. That is why the additional effort
of managing the semantic metadata is justified. A common way of performing the
matching or SLA negotiation is a two-step approach as proposed by METEOR-S,
Grønmo/Jaeger [18], or in “Semantic WS-Agreement Partner Selection” [29]. The
first step performs functional matching. We suggest a hybrid semantic matching
based on input and output parameters, e.g. by using OWLS-MX. In addition we
propose to use the service category. Due to the semantic information not only exact
matches of parameters and taxonomies are found but also parameters that stand
in a class-sub-class relationship, e.g. car – convertible. The second matching step
performs the non-functional matching using particularly the QoS-related informa-
tion. Constraints about the QoS-characteristics on the service consumer side (QoS
Required) are compared with the QoS-offerings specified in the service description
(QoS Offered). The outcome is a ranking of the existing services that perform the
desired functionality according to how well they meet the QoS requirements. Once
a service is chosen, an SLA, a formal specification of the agreement between service
consumer and service requestor (inter- or intra-organizational) can be specified.

It is planned to extend the prototype’s service matching functionality and also
to introduce an SLA specification, and SLA management module. According to a
service request with a set of semantically enriched functional and non-functional
information this module will discover existing services in the repository, provide
their WSDLs and specify the SLA in a nearly fully automated way. The format for
the SLA will be WSLA or WS-Agreement. The machine-readable SLA is a good
basis for automated SLA-enforcement and monitoring during run-time. In case of
problems, the person responsible can find the respective service in the registry and
has access to information, e.g. contact details, infrastructure the service runs on.
Matching and SLA specification functionality will ease the life of system developers
as well as SLA authors/enforcers. It will also foster reuse, one of the goals of SOAs.

7. Conclusion and Outlook

As SOAs will be very complex from an IT service management point of view,
in order to deliver their full value automated tool support is necessary. Semantic
description of non-functional service characteristics is one important prerequisite
for that.

62 Schröpfer, Schönherr, Offermann and Ahrens

The contribution of the presented work is a practical approach to service de-
scription and discovery that is extensible regarding additional future requirements.
The article shows that it is possible to build a semantically enriched service repos-
itory with OWL-S that supports several tasks that are the basis for higher level
service management activities. With the approach, it is possible to describe –
along with the functional characteristics – the non-functional characteristics with
respect to service management (service lifecycle management and QoS) in a single
OWL-S-based repository. The approach is extendable with respect to changes of
the used taxonomy as well as the elements used for service description. At the same
time it is a compatible upgrade of the existing Web services description standards.
Besides the presented approach, the article also gave an overview over relevant
standards and related work in the area of non-functional service description.

The prototype will be extended to support better integrated service descrip-
tion functionality. Extensions for automated service discovery, SLA specification,
and SLA management are planned.

References

[1] M. Sallé, IT service management and IT governance: review, comparative analysis
and their impact on utility computing. 2004. http://www.hpl.hp.com/techreports/
2004/HPL-2004-98.pdf

[2] B. Woolf, Introduction to SOA governance – Governance: The official IBM defini-
tion, and why you need it. IBM, 2006. http://www-128.ibm.com/developerworks/
webservices/library/ar-servgov/index.html

[3] J. O’Sullivan, D. Edmond, and A. ter Hofstede, What’s in a service? To-
wards accurate description of non-functional service properties. Kluwer Aca-
demic Publishers, 2002. http://www.infosys.tuwien.ac.at/Teaching/Courses/

IntAppl/Papers/WhatsInAService.pdf

[4] G. Dobson, Quality of Service in Service-Oriented Architectures. 2004. http://digs.
sourceforge.net/papers/qos.html

[5] E. M. Maximilien and M. P. Singh, A framework and ontology for dynamic Web
services selection. IEEE Internet Computing 08 (2004), 84–93.

[6] S. Frolund and J. Koistinen, Quality of Service specification in distributed
object systems design. 1998. https://www.usenix.org/publications/library/

proceedings/coots98/full_papers/frolund/frolund.pdf

[7] DAML, DAML Services. 2006. http://www.daml.org/services/owl-s/

[8] D. Martin et al., OWL-S: Semantic markup for Web services. Martin, Ed., 2006.
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/

[9] Web Service Modeling Ontology – ESSI WSMO working group. 2006.

[10] R. Akkiraju et al., Web service semantics – WSDL-S – W3C member submis-
sion 7 November 2005 – Version 1.0. 2005. http://www.w3.org/Submission/2005/
SUBM-WSDL-S-20051107/

[11] Emerging Technologies Toolkit. IBM, 2006. http://www.w3.org/Submission/2005/
SUBM-WSDL-S-20051107/

Service Management-Related Service Description in SOAs 63

[12] H. Ludwig et al., Web Services Level Agreement (WSLA) Language Specification.,
2003. http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

[13] V. Tosic, K. Patel, and B. Pagurek, WSOL – Web Service Offerings Language. in
CAiSE’02 (2002), 57–67.

[14] D. D. Lamanna, J. Skene, and W. Emmerich, SLAng: A Language for Defin-
ing Service Level Agreements. 2003. http://www.cs.ucl.ac.uk/staff/w.emmerich/
publications/FTDCS03/slang.pdf

[15] A. Andrieux et al., Web Services Agreement Specification (WS-Agreement). 2005.

[16] OMG, UML Profile for Modeling Quality of Service and Fault Tolerance Characteris-
tics and Mechanisms – OMG available specification – Version 1.0 – formal/06-05-02.
OMG, 2006. http://www.omg.org/cgi-bin/apps/doc?formal/06-05-02.pdf

[17] J. Ø. Aagedal, Quality of Service support in development of distributed systems.
Department of Informatics, Faculty of Mathematics and Natural Sciences. Doctor
Scientiarium: University of Oslo, 2001.

[18] R. Grønmo and M. C. Jaeger, Model-driven methodology for building QoS-optimised
Web service compositions. The 5th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS).

[19] M. Tian, QoS integration in Web services with the WS-QoS framework. Department
of Mathematics and Computer Science Berlin: Freie Universität Berlin, 2005.

[20] M. Klein and B. König-Ries, A process and a tool for creating service descriptions
based on DAML-S. 2003. http://hnsp.inf-bb.uni-jena.de/DIANE/docs/TES2003.
pdf

[21] M. Klein, B. König-Ries, and M. Müssig, What is needed for semantic service de-
scriptions – a proposal for suitable language constructs. International Jounal on Web
and Grid Services, 2005.

[22] M. Klusch, B. Fries, and K. Sycara, Automated Semantic Web Service Discovery
with OWLS-MX. AAMAS 2006, Hakodate, Hokkaido, Japan, 2006.

[23] Jena – A Semantic Web Framework for Java. sourceforge.net. http://jena.

sourceforge.net/

[24] Welcome to Protégé. Stanford Medical Informatics, 2006. http://protege.

stanford.edu/

[25] What is Protégé-OWL? Stanford Medical Informatics, 2006. http://protege.

stanford.edu/overview/protege-owl.html

[26] The OWL-S Editor. 2004. http://owlseditor.semwebcentral.org/

[27] SoftComplex, Tigra Tree Menu. SoftComplex. http://www.softcomplex.com/

products/tigra_tree_menu/

[28] HyperGraph. http://hypergraph.sourceforge.net/

[29] N. Oldham et al., Semantic WS-Agreement Partner Selection. International World
Wide Web Conference Committee (IW3C2), Edinburgh, Scotland, 2006.

64 Schröpfer, Schönherr, Offermann and Ahrens

Christian Schröpfer
Faculty of Electrical Engineering and Computer Sciences
Technische Universität Berlin
Franklinstr. 28/29
10587 Berlin
Germany
e-mail: Christian.Schroepfer@sysedv.tu-berlin.de

Marten Schönherr
Faculty of Electrical Engineering and Computer Sciences
Technische Universität Berlin
Franklinstr. 28/29
10587 Berlin
Germany
e-mail: MSchoenherr@sysedv.tu-berlin.de

Philipp Offermann
Faculty of Electrical Engineering and Computer Sciences
Technische Universität Berlin
Franklinstr. 28/29
10587 Berlin
Germany
e-mail: Philipp.Offermann@sysedv.tu-berlin.de

Maximilian Ahrens
Deutsche Telekom Laboratories
Ernst-Reuter-Platz 7
10587 Berlin
Germany
e-mail: Maximilian.Ahrens@telekom.de

Whitestein Series in Software Agent Technologies, 65–81
c© 2007 Birkhäuser Verlag Basel/Switzerland

Model Centric Approach of Web Services
Composition

Ricardo Quintero, Victoria Torres and Vicente Pelechano

Abstract. The development of composite Web Services is being specified in a
more declarative way than imperative programming. In this context, concep-
tual modeling has been the most accepted solution. Conceptual modeling of
Web services has been done using behavioral models (like activity diagrams)
considering mainly the dynamic view. We believe that, besides the dynamic
aspects, the models should capture structural requirements between web ser-
vice operations. In this way, behavioral models could be complemented with
a structural model. In this paper we introduce a Web service composition
modeling solution, following the MDA approach, considering both -structural
and dynamic properties- enriched with semantic constraints in order to auto-
matically generate composite Web services implemented in BPEL.

Keywords. Web Services, Composition, Conceptual Modeling, Web Engineer-
ing, MDA.

1. Introduction

Current e-business processes have, as an important requirement, the integration
(the composition) of diverse application functionalities. The main strategy that
has been followed by the industry is the use of Web Services to export the func-
tionality and the use of programming languages to define service composition [11].
Because the majority of them were not designed with this goal in mind, they do
not have abstractions for this objective, so usually the composition definitions are
cumbersome. In contrast, conceptual modeling offers abstractions and models in
order to define this composition at a high level of abstraction [12,13,14]. The main
focus of these approaches is on dynamic concerns (as in UML Activity diagrams)
forgetting the structural concerns. Although there are some model-driven solu-
tions that generate in a semi-automatic way Web services and WS-BPEL [15], the
problem with these modeling approaches is some lack of semantics that makes it
difficult to capture the composition requirements in a precise way. This drawback

66 Quintero, Torres and Pelechano

does make it unfeasible to build modeling tools that validate models and generate
complete and fully operative implementations. We consider that structural and
dynamic models are needed in order to capture these issues, especially static and
dynamic binding properties between the Web services that are being composed
(the main focus of this work). Moreover it could be used as a way to export the
functionality of the application: by means of methodological guidelines it is possi-
ble to detect functional groups from the business layer (specified by a structural
model) and export them as a set of Web services. These Web services could be
consumed by other applications to enable collaboration with other third parties.
In this work we introduce, as a main contribution, two models (the Service Model
and the Dynamic Model for Service Composition) which allow us specifying the
structural and dynamic requirements of Web services compositions by using aggre-
gation/association relationships with a precise semantics, defined in the context of
a multidimensional framework [3]. In order to obtain the equivalent software arti-
facts of these models we follow a Model driven approach where the application of
a set of transformation rules generates the corresponding WS-BPEL specification.
This solution extends our Web engineering method Object-Oriented Web Solutions
(OOWS) [1] in order to capture the collaborative requirements that are necessary
to produce (in an automatic way) complete collaborative Web applications. The
remainder of the paper is structured as follows: section 2 explains our proposal to
conceptual modeling of Services; section 3 shows the introduced models from the
point of view of their structural properties; section 4 explains the dynamic prop-
erties and the transformation of the models to a specific Web service composition
technology (in this case we choose WS-BPEL [4], although it can be another -like
BPML [5]); section 5 explains our code generation strategy and finally, section 6
presents conclusions and further work.

2. Conceptual Modeling of Services

The Model Driven Architecture (MDA) [2] is a new development strategy in which
models are the first order actors within the software development process. MDA
has several stages in which specific models are defined: the platform independent
models (PIM), that describe the system with high-level constructs hiding the neces-
sary technological details of the specific platform; and the platform specific models
(PSM) which on the contrary, describe the system in terms of a specific technologi-
cal platform. Besides these models, MDA proposes a strategy that has to be applied
in order to transform these models into code. Following the MDA strategy we de-
fine two PIM models to capture the requirements of Web services compositions:
a Service Model (hereafter SM) and a Dynamic Model for Service Composition
(hereafter DMSC). As vertical arrows show in Figure 1 each of these models is
mapped into a PSM model, the horizontal ones represent the existing relation-
ships between them (both, at PIM and PSM level). The constructs of the PIMs

Model Centric Approach of Web Services Composition 67

and PSMs (its metamodels) are defined using the Meta-Object Facility (MOF)
language.

Figure 1. MDA strategy to service composition modeling

The SM captures the structural requirements of both, own and external Web
services of the application including their ports and operations. This PIM model
can be then transformed into several PSMs such as .NET [3] or J2EE [4]. The
behavior of the Web services composition is defined by the DMSC. Although tra-
ditionally the approach followed has been to compose the new Web services by
specifying only the orchestration of the Web service components, we believe that
the structural requirements captured in the SM are also needed to have a complete
specification in order to enable the automatic code generation.

2.1. Service Modeling

The structural requirements of produced and consumed functionality of an appli-
cation are captured in the SM. Figure 2 shows the SM metamodel foundation.
The included metaclasses are the basic constructs needed to model Web services,
similar to other works [6,7,8]. The produced functionality is captured in the set of
produced Web services from our application (called Own-services, see Figure 2).
The consumed functionality is captured in the set of consumed Web services of our
application (called External-services). Each service has one or more access points
(Port) where each one has one or more of the following operations: (1) one-way
(One-way-op), an asynchronous operation invoked by a client without response;
(2) notification (Notification-op), an asynchronous operation invoked by the ser-
vice without response; (3) request-response (Req-resp-op), a synchronous opera-
tion invoked by the client with response from the service and (4) solicite-response
(Sol-resp-op), a synchronous operation invoked by the service with response from
the client. The input and output parameters (Parameter) are one of the two spe-
cialized types from the data type (Data-type): simple (Simple-DT) or complex
(Complex-DT).

68 Quintero, Torres and Pelechano

Services (own/external) Operations

Data types

Ports

Figure 2. The foundation SM metamodel

<service name=”AmazonSearchService”>

<operation name=”AsinSearchRequest”>
…
</operation>

<xsd:complexType name=”AsinRequest”>
<xsd:complexType name=”ProductInfo”>
<xsd:element name=”Details” type=”typens:DetailsArray” />
<xsd:element name=”OurPrice” type=”xsd:string” minOccurs=”0”/>

Figure 3. SM for Amazon.com (AWS)

Figure 3 shows an instance (an extract) of the SM of Amazon.com (AWS).
The operation shown (asinSearchRequest) allows the user to query information
about a Product (ProductInfo) from its isbn (AsinRequest). From the point of

Model Centric Approach of Web Services Composition 69

view of the application, services can be built in one of the following ways: (1)
Own-services, with two possibilities: (a) those whose operations are views of the
pre-existing operations in the logic layer of our application (at conceptual level they
may be specified in the structural model) and (b) those whose operations are built
from the composition of the operations from other own or external Services; and
(2) External-services obtained from other applications that publish and produce
them.

3. Structural Concerns

Services whose operations are built from the composition of own or external ser-
vices are implemented by orchestrating their operations. This is a way of building
new functionality (the new own-service) by reusing functionality through com-
position (from the pre-existing own or external services). From this perspective,
service composition could be specified by aggregation relationships of the services
components. Adding this new structural modelling, some tasks will be more easy
to do (as we are going to show) than with the traditional dynamic approach, such
as the dynamic Web service selection or the automatic and complete code genera-
tion contributing to facilitate the maintenance of the composite Service. In order
to have a precise definition of the relationships, its semantics needs to be defined.
Some works have addressed this problem in the context of object oriented con-
ceptual modeling [9,10]. In this work we follow the multidimensional framework
proposed in [3] to characterize aggregation relationships between Web services.
The use of this multidimensional framework allows us to capture the structural
properties of the composition which are explained in the following subsections.

3.1. Service Aggregation

The structural properties of the composition are captured in the SM. These prop-
erties characterize and define the semantics of the relationships between the Web
services being aggregated (its binding). In the aggregation relationship, the service
defined is called the composite Service (an Own-service) and the own or external
services that are being aggregated are called the component Services.

3.2. Properties Specification

The properties are explained with respect to the MOF metamodel in Figure 4.

70 Quintero, Torres and Pelechano

Aggregation-end

name

Service

name

Own-service

Aggregation

Composite-serv

0..*

1

Ag-end-composite

1

1
1

1

1

1

1

0..*

11

+composite-end

Component-serv

+composite

External-service

Ag-end-component

CTS

max-multiplicity

min-multiplicity

1
1

1
1

0. .*

0..1

+component-end
0. .*

0..1

+os-component

0..*

0..1

+component-end
0..*

0..1

+es-component

Aggregation

Composite

service

Component

service

Figure 4. Service aggregation MOF metamodel

1. Temporal Behaviour:
Definition: specifies if the composite Service has (or does not have) per-

manent binding with the component Service during its lifetime.
Defined over: aggregation end (component Service).
Nomenclature: CTS aggregation-end

Values: Static—Dynamic
• Static:the component Service is bound to the composite service

during its life.
• Dynamic: the component Service is dynamically selected from data

values (called process variables [11]) obtained during the execution
of the composition logic, usually from a UDDI registry.

Semantic constraint: expressed in OCL [9]
context Ag-end-component
inv temporal-value:
CTS=’Static’ or CTS=’Dynamic’

2. Multiplicity:
Definition: specifies the minimum and maximum number of component

services (of the same type) connected with the composite service.
Defined over: aggregation end (component Service).
Nomenclature: Min aggregation-end, Max aggregation-end

Values: nonnegative integers.

Model Centric Approach of Web Services Composition 71

Semantic constraint: in OCL
context Ag-end-component
inv multiplicity-value:
max-multiplicity >=0 and min-multiplicity >=0 and
min-multiplicity <= max-multiplicity

3.3. Additional Semantic Constraints

One advantage of this multidimensional framework is the additional knowledge
implied, which can be used to build better modeling tools with model checking
features that assist the modeller in the correct construction of SMs. Some examples
of the additional knowledge are as follows (expressed in OCL):

1. Every aggregation includes as a component Service an Own or External ser-
vice (different from the composite Service):

context Ag-end-component
inv at-least-one-component-service:
os-component->size()>0 xor es-component-size()> 0

2. The Static value from the Temporal Behaviour property implies that the
maximum and minimum values from the multiplicity property are 1 (see
Figure 5):

context Ag-end-component
inv static-multiplicity:
CTS=’Static’ implies (multiplicity-Max=1 and multiplicity-Min=1)

3. The Dynamic value from the Temporal Behaviour property implies that the
maximum multiplicity values should be greater than 1. The composite Ser-
vice could be binding with 2 or more possible component Services, each one
dynamically selected, as we are going to show.

context Ag-end-component
inv dynamic-multiplicity:
CTS=’Dynamic’ implies multiplicity-Max>1

3.4. Service Aggregation Examples

Figure 5 shows an example of service aggregation to an e-business application
that uses the Amazon Web service and B&N Web service. The composite service
Best-StoreService uses both Web services to get the best store and book price.
The aggregation relationship is defined Static because the composite service

should have permanent binding with the component services. So they are spec-
ified using static Temporal Behaviour and multiplicity value equal to 1.

72 Quintero, Torres and Pelechano

AmazonSearchService

asinSearchRequest()

<<external-service>>

BestStoreService

getBestStore()

getBestPrice()

<<own-service>>
1

BNQuoteService

getPrice()

<<external-service>>

11

1
<<static>>

<<stat ic>>

Temporal behaviour property

Composite Service

Component Services

Figure 5. SM using static aggregation

LWService

inStock()

getPrice()

<<own-service>>

SService

getPriceinStock()

<< >>
1

<<static>>

EWService

inStock()

getPrice()

<<service>>

1..*

<<dynamic>>

1..*

1

Temporal behaviour property

Component Services

Composite Service

own-service

Figure 6. SM using static and dynamic aggregation

Figure 6 shows another example. In this case, the composite service (SSer-
vice) is for a supplier application with the following process: to request the price of
a product, the composite service offers the operation (getPriceInStock). This op-
eration first checks the stock in the local warehouse using an own service (LWSer-
vice). If the product is not in stock then it is checked in one of a couple of central
warehouses using only one of the services EWService1 or EWService2 (special-
izations of the abstract service EWService, see Figure 7). So the binding between

Model Centric Approach of Web Services Composition 73

the composite service (SService) and the own service (LWService) is Static and
to the EWService is Dynamic. In order to resolve to which concrete EWService is
going to communicate with the SService, a condition is defined in the SM of the
dynamic Web service.

Figure 7 shows the SM for the dynamic EWService. When a set of Web
services (in this case EWService1 and EWService2) are going to be managed
dynamically, first they are imported to the SM from a UDDI registry. Then, a
facade class (FEWService), with an operation getXService, is generated into the
model in order to delegate it the responsibility of dynamic Web service selection.
This operation includes the condition necessary to select the concrete Web service
in the dynamic model. This condition can be established in the SM or the DMSC.

UDDI

Importing external-services
from UDDI registry using query

conditions

context FEWService::getEWService(condition):Service
body: if condition

then EWService1
else EWService2

endif

OCL query operation with the
condition to select dynamically the
WareHouse service (in the DMSC)

A façade class to select
dynamically the Web service in

the DMSC

Figure 7. Importing Web services to the SM to be used in a
dynamic way

In the first case, the condition is based on the different model elements of the
application. Because the condition is not defined as part of the DMSC definition,
the reuse and flexibility in this model is improved (by example, if a new central
Warehouse is added then only a EWService3 is added to the SM, the DMSC is
not changed and the dynamic selection responsibility continues in the SM). In the
second case, the modeler defines the condition based on process variables from the
DMSC and this condition is passed as parameter to the getXService in the SM
in order to select the Web service. An example of this mechanism is presented in
subsection 4.3.

74 Quintero, Torres and Pelechano

4. Behavioral Concerns

The logic of the composed Web services is captured in the DMSC. This model is
defined as an UML activity diagram whose actions define the invocation of some
of the component services operations. Each of those operations is defined as one of
the types listed in Table 1 which correspond to the possible Web services operation
types (see Figure 2).

Operation Type Stereotype
One-way <<one-way>>

Request-response <<request-response>>
Notify <<notify>>

Solicite-response <<solicite-response>>

Table 1. DMSC operations types and stereotypes

To manage the data of the process two more actions are defined: variable
declaration (stereotyped with the keyword <<variable>>) and variable assignment
(stereotyped with the keyword <<assign>>).
In the case of dynamic selection of Web services, we define a special data type

Service. An action to select dynamically the service (stereotyped with the keyword
<<select-service>>) is also defined.
DMSC could be mapped to WS-BPEL (or another language such as BPML). In

the following subsections the WS-BPEL mappings are introduced. An example is
presented next to show the use of the DMSC and its mapping to WS-BPEL for
an e-commerce service (BestStoreService).

4.1. The BestStoreService Case Study

Once the structural concerns of the BestStoreService (see Figure 5) have been de-
fined, the composition logic of each operation needs to be specified by a DMSC.
Figure 8 shows the composition logic of the getBestStore operation. Its DMSC is
included in an action getBestStore (stereotyped with the keyword <<operation>>).
The action has an input-pin, with the input parameter of the operation (isbn),
and an output-pin (BestStore) with the return value.
The translation of the operation to WS-BPEL needs the structural knowledge

captured in the SM (Figure 5) and the composition logic captured in the DMSC
(see Figure 8):

Model Centric Approach of Web Services Composition 75

Figure 8. DMSC of the getBestStore operation

Process definition: corresponding to the main XML element (<process>) of the
WS-BPEL process. This is obtained from the action name of the operation
(getBestStore in Figure 8).

Partner links identification: the partner links corresponds to: (1) the client, who
invokes the WS-BPEL process and (2) the Web services invoked by the BPEL
process. In the first case, the client name of the process is specified with the
following syntax: service-name-clientLT. The service-name is taken from the
name of the composite service in the SM. The role corresponds also to the
service-name and the portType is corresponding from the port name in the
SM. Each one of the component services are the Web Services collaborators.
Its name has the following syntax: service-name-clientLT. For example, from
the own-service the following code is generated:
<partnerLinkType name="BestStoreService-clientLT">
<role name="BestStoreService">

Operation logic: is defined in terms of WS-BPEL following this basic template:
<process name=..>
<partnerLinks>..</partnerLinks>
<variables>..</variables>
<sequence>..</sequence>
</process>

Client partnerLink definition: from the client definition as collaborator it is pos-
sible to obtain its partnerLink in the SM. For example:
<partnerLinks>
<partnerLink name="client" partnerLinkType
name="BestStoreService-clientLT"

76 Quintero, Torres and Pelechano

myRole="BestStoreService"
partnerRole="’BestStoreServiceClient" />
</partnerLinks>

Definition of the other partnerLinks: from the component services and its part-
nerLinks is possible to obtain the partnerLink of the other collaborators.
For example from the name of the external service AmazonSearchService is
possible to generate the <partnerLink> and the <partnerLinkType> XML
elements.

Variable definition: for each message sent to the collaborators corresponding to
an operation invocation it is necessary to define at least one variable (request
for the invocation) if none value is returned; in other case, it is necessary
to define two variables (additionally a response for the return value). This
can be obtained from the operation definition in the SM and its use in the
DMSC.
Declared variables in DMSC actions also can be mapped to variable elements

in the process. For example, from the action in the DMSC PA:Float is possi-
ble to generate the <variable name="PA" messageType="xsd:float">XML
element.
In operations with response, it is necessary to define two variables: one for

the request and one for the response. The SM is used for this mapping.
Main body process: which starts with the message reception from the client:

<receive partnerLink="client">
operation="getBestStore"
variable="getBestStoreRequest"
createInstance="yes">

Each action of the DMSC is mapped to a WS-BPEL activity. For example, a
condition action (with a PA<=PB boolean condition) in the DMSC comparison
is mapping to the following XML element:
<switch>
<case condition="getVariableData(PA)<=getVariableData(PB)">
...
</switch>

4.2. Web Service Dynamic Selection

The dynamic selection of Web services is specified in the DMSC with two special
actions: (1) a variable declaration action to define a variable of the data type
Service. This variable will be set using the select-service action. And a (2) select-
service action: in which the getXService operation, defined in the facade of the
dynamic service in the SM, is invoked in order to select dynamically the Web based
on a condition defined by the modeler using an OCL expression.

Model Centric Approach of Web Services Composition 77

With respect to the example of dynamic Web service selection of central ware-
houses from Figure 6, in order to implement the SService.getPriceinStock
operation and taken into account the SM for the composite Web service (see
Figure 7), the actions needed to specify the dynamic selection of web services
are: (1) a declaration of a variable of type Service (DService:Service) (2) a
select-service action (DService=FEWService.getEWService(country="Spain"))
and (3) a request-response action (price=Dservice.getPrice()). In this case the
condition has been defined on a DMSC process variable (country) which is passed
as parameter to the condition in the SM.

5. Code Generation

Three steps are included in the code generation strategy to implement our pro-
posal: In the first step we define a set of model to model transformations: from
PIM models -SM and DMSC- to PSM models -Java and BPEL-. Both kinds of
models are defined using the Eclipse Modeling Framework (EMF) [16] and the
transformations are defined using the ATLAS Transformation Language (ATL)
[17].
In the second step, another set of model to text transformations are also defined,

from PSM models to source code. For each one of the models, a group of templates
are defined to enable the complete source code generation (Java and WS-BPEL).
We implement this step by using the ERb tool for templates and the Ruby language
[18].
In the third step, the Java source code generated from the step 2, is compiled

with a common Java compiler (as javac) and is installed in an application server.
In the case of WS-BPEL, there is no need to compile; only the code is deployed in
a BPEL execution environment. The details about this code generation strategy
are given in the following subsections.

5.1. Metamodels Definition

The PIM and PSM models are defined using KM3 [19]. Once the metamodels are
specified in KM3, then they are transformed to EMF Ecore.
As an example, the following code shows an excerpt of the SM. By using the

transformation from KM3 to Ecore existing in the ATL tool, they are transformed
to EMF Ecore.

abstract class Service {
attribute name : String;
reference port[1..*]:Port;
}
class EService extends Service { }
class OService extends Service { }

78 Quintero, Torres and Pelechano

class Port {
attribute name : String;
}

We also define metamodels for the DMSC, PSM-Java (based on platform
Axis [20]) and PSM-BPEL. The models are specified in XMI 2.0 format [21].

5.2. Model to Model Transformations

The model to model transformations are defined using ATL rules. The Model to
Model strategy is shown in Figure 9.

Service Model

PIM

(EMF-Ecore) (EMF-Ecore)

(EMF-Ecore)(EMF-Ecore)

DMSC

PIM

ATL rule Transformations

Java AXIS Model

PSM
BPEL Model

PSM

Figure 9. Model to model strategy

As an example, the following code is the transformation rule from the SM
to PSM-BPEL which implements the transformation defined for the PartnerLinks
identification step in 4.1 section. This rule matches the Service name in the SM
and generates the Partnerlinks, role and PortType of the PSM-BPEL.
rule Service2Partnerlinktype {
from a:Service!Service
to pl :PSM_BPEL!Partnerlink(name <- s.name + ’_clientLT’)

role :PSM_BPEL!Role(name <- s.name)
port :PSM_BPEL!PortType(name <- s.name + ’port’)

}

The input to the rule is a SM and the output is a PSM-BPEL model. From
this last model, a model to code transformation algorithm, based on templates,
are applied to obtain the final WS-BPEL (or Java) code.

5.3. Model to Code Transformations

Figure 10 shows the general Model to Code strategy. From the PSM models a final
transformation is needed. For each one of the PSM models a set of templates are
designed, depending on the source files needed to the final platforms. So we design
templates to the AXIS platform and to the WS-BPEL platform.

Model Centric Approach of Web Services Composition 79

Java AXIS Model
PSM

(EMF-Ecore)

BPEL Model
PSM

(EMF-Ecore)

Templates
(Java AXIS)

Templates
(BPEL)

Code Generation
(PSM+Templates)

Source code
(Java)

Source code
(BPEL)

Compiler
(Javac)

Executable code
(bytecode)

Figure 10. From PSM models to target source code

As an example, the following code shows the template (with a format defined by
the ERb tool) for the example of the PSM-BPEL in the previous section.

<PartnerLinkType name="<%=name_pl%>">
<role name="<%=name_service%>">

<portType name="<%=name_port%>">
</role>

</PartnerLinkType>

This template and the XMI model generated in the previous step are inputs
to the code generator and the final WS-BPEL is obtained.

In the case of the PSM-Java AXIS Model, the code generator produces Java
code that will need a final compilation using the java compiler (javac).

6. Conclusions and Further work

In this work we have presented a solution for the conceptual modeling of Web
service compositions. The proposed models capture structural (SM) and dynamic

80 Quintero, Torres and Pelechano

(DMSC) requirements of the composition. As we have shown, the captured as-
pects in both models are complementary and needed to enable the complete code
generation of the composite Web service.

Moreover, with the structural model the modeler gains flexibility and reuse
as we have shown in the case of dynamic Web service selection in the DMSC.
If a new Web service is introduced, in the traditional approach changes in the
dynamic model would be needed. Because our approach follows a polymorphic
strategy we only need to add a new Service in the SM and, maybe, a change in
the select condition. The DMSC will not change. Finally, from these models a
transformation to WS-BPEL specification has been presented too.

This proposal has been proven successfully in the construction of the col-
laborative aspects of the Technical University of Valencia General Library Web
application (http://www.upv.es/bib/index_i.html).

We are currently including this proposal in the CASE tool of our Web En-
gineering method OOWS. With this proposal, the designer specifies the Service
view of the Web application that is being modeled.

As further work we consider exploring the reuse of Web services using special-
ization relationships in the structural and dynamic models. Presentation concerns
should be another topic that we need to explore.

References

[1] Fons J., Pelechano V., Albert M. And Pastor O. Development of Web Applications
from Web Enhanced Conceptual Schemas. Proc. of the International Conference on
Conceptual Modeling. 22nd Ed. ER’03, pp. 22-45, EEUU, 13-16 october 2003.

[2] OMG. MDA. http://www.omg.org/mda

[3] Albert M., Pelechano V., Fons J. Ruiz M. Pastor O. Implementing UML association,
Aggregation and Composition. A particular Interpretation based on a Multidimen-
sional Framework. CaiSE 2003: 143-148.

[4] Andrews T. Et al. Business Process Execution Language for Web Services. Version
1.1. http://www128.ibm.com/developerworks/library/specification/ws-bpel/

[5] BPMI. Business Process Management Language. http://www.bpmi.org

[6] Colombo Massimiliano, Di Nitto Elisabetta, Di Penta Maximiliano, Distante Dami-
ano, Zuccal Maurilio. Speaking a Common Language: A conceptual Model for De-
scribing Service-Oriented Systems. ICSOC 2005: 48-60

[7] Gronmo R., Slogan D., Solheim, Oldevik J. Model-driven Web Services Development.
SINTEF Telecom and Informatics. EEE’04

[8] Bzivin J., Hammoudi S., Lopes D., Jouault F. Applying MDA Approach for Web
Service Platform. Atlas Group, INRIA and LINA. ESEO. TNI-Valiosys. EDOC 2004.

[9] Warmer J. Kleepe A. The object constraint language. Second edition. Addison Wesley.
2003.

[10] Kristensen B. B. Osterbye K. Roles: Conceptual abstraction theory and practical
languages issues. Theory and practice of Object Systems. 2(3): 143-160, 1996.

Model Centric Approach of Web Services Composition 81

[11] Alonso G., Casati F., Kuno H., Machiraju V. Web Services. Concepts, Architectures
and Applications. Springer 2004.

[12] Object Management Group. Unified Modeling Language Specification. http://www.
uml.org

[13] Reisig W. And G.R. (editors). Lectures on Petri Nets I: Basic Models. Lecture Notes
in Computer Science. Springer-Verlag, 1998.

[14] Milner r. Parrow J., Walker D. A calculus of mobile processes. Information and
Computation. 100(1):1-40, Sept. 1992.

[15] Anzbock R., Dustdar, S. Semi-automatic generation of Web services and BPEL
processes - A Model-driven approach (Appendix), BPM 2005, 5-7 September, Nancy
France. Springer LNCS

[16] Eclipse project. Eclipse Modeling Framework (EMF). http://www.eclipse.org/emf

[17] Eclipse project. ATL Home page. http://www.eclipse.org/gmt/atl

[18] Herrington Jack. Code generation in action. Manning Ed. 2003.

[19] Joualt, F., Bzivin J.: KM3: a DSL for metamodel specification. In: Proceedings of
8th IFIP International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems, Bologna, Italy (2006).

[20] Apache project. Web Services - Axis. http://ws.apache.org/axis

[21] OMG/XMI XML Model Interchange (XMI) 2.0. Adopted Specification. Formal/03-
05-02, 2003.

Ricardo Quintero
Department of Information Systems and Computation
Technical University of Valencia
Cami de Vera s/n E-46022, Spain
e-mail: iscrquinter@dsic.upv.es

Victoria Torres
Department of Information Systems and Computation
Technical University of Valencia
Cami de Vera s/n E-46022, Spain
e-mail: vtorres@dsic.upv.es

Vicente Pelechano
Department of Information Systems and Computation
Technical University of Valencia
Cami de Vera s/n E-46022, Spain
e-mail: pele@dsic.upv.es

Whitestein Series in Software Agent Technologies, 83–100
c© 2007 Birkhäuser Verlag Basel/Switzerland

Model Driven Design of Web Service
Operations using Web Engineering Practices

Marta Ruiz and Vicente Pelechano

Abstract. The design of Web Services is nowadays emerging as one of the most
important tasks in the development of a Service Oriented Application. Web
service designers need some guidelines to achieve a design of quality. In this
paper we provide a methodological guide in the context of a Web engineering
method called OOWS. Our approach allows identifying the operations of Web
services following a model driven approach, taking the OO-Method / OOWS
conceptual models as the source. To document our approach, we apply our
ideas to a real case study of a Web application to manage University Research
Groups.

Keywords. Web services design, Service Oriented Architecture, Model Driven,
Web engineering, Software Process Engineering.

1. Introduction

Web services have emerged as important components of modern Web applications.
There are some approaches working on designing services interfaces. Ambler [1]
presents several steps for deriving a set of Web services from an object-oriented
application, identifying domain packages and the services that each package pro-
vides. Papazoglou [8] describes a design methodology for Web services based on
business processes. On the other hand, Web engineering methods are extending
their proposals to introduce Web services into Web conceptual models. In this con-
text, we can distinguish approaches that introduce some kind of syntactic mecha-
nism to include Web services calls into navigational models like OOHDM [13] and
UMLGuide [3]. However, these approaches do not give support to the design and
development of Web services. Other methods like OO-H [4] allow Web developers
to generate Web services interfaces but they do not give support to their design
either. Finally WebML [5] captures Web services invocations by means of visual

This work has been developed with the support of MEC under the project DESTINO TIN2004-
03534, cofinanced by FEDER and the PAID-04-06 project by UPV..

84 Ruiz and Pelechano

representations. They describe the Web interactions using hypertext models but
do not follow any strategy or guide to design Web services.

In this work, we present a Web service design guide that extends the OOWS
method [10]. OOWS is a Web engineering method that is based on the principles
defined by the Model-Driven Development (MDD) [6]. It allows us to automatically
obtain fully operative web applications from conceptual models. In order to design
the operations of Web services, we consider that the OO-Method [9] / OOWS
models are a key point. OO-Method / OOWS models allow us to automatically
obtain Web services operations.

The main contributions of this work are:

• Determining which models are useful to obtain Web services operations.
• Proposing a methodological guide to design the operations of Web services.
• Identifying operations that give support to the functional requirements of

an application, user identification and management, information retrieval,
navigation and presentation. A first approach of this work can be found in
[12].

• Providing a Web services design method with tool support to automatically
generate the WSDL of the Web services.

The structure of the paper is the following: section 2 introduces a Web service
design approach based on the OO-Method / OOWS method. Section 3 presents
a methodological guide to obtain well designed Web services in a SOA. In our
approach, a set of operations are identified taking the OO-Method / OOWS con-
ceptual models. These operations define the public operations that a Web service
can offer to web applications (major web clients). Finally, we present some con-
clusions and further work in section 4.

2. An overview of the Web service design process

In this section, we introduce a Web service design process that takes into account
the OO-Method / OOWS models. To present this process we use the notation and
terms defined in the Software Process Engineering Metamodel (SPEM) proposed
by the OMG [14]. SPEM is a meta-model for defining software engineering process
models and their components. First, we present the Disciplines that define our
process as well as the Activities, WorkProducts and ProcessRoles that are included
in each step. Next, we present the Sequencing of Activities that defines the design
process.

2.1. Web Service Design Process

According to SPEM, an Activity is a piece of work performed by one ProcessRole
in order to obtain a WorkProduct. A Discipline partitions the Activities within a
process according to a common ’theme’.

Model Driven Design of WS Operations using WE Practices 85

Our Web service design process is defined from the following disciplines:
Requirements Elicitation (see figure 1-A), OO-Method (see figure 1-B) and OOWS
(see figure 1-C) conceptual modeling and code generation.

Requirements
Elicitation

Analysts

Elicit User’s Requirements

Specify Requirements

Requirements
Model

Modelers

OOWS Tool

OOWS

Web Conceptual Modelling

Web interface generation

OOWS
Conceptual Models

Web Interface

OMNE

OO-Method

Modelers

Conceptual Modelling

Code generation

OO-Method
Conceptual Models

Application

A) B) C)

Figure 1. Requirements Elicitation, OO-Method and OOWS Disciplines

2.1.1. Requirements Elicitation. This discipline includes those activities that are
related to the elicitation of the user’s requirements. These activities are two (see
figure 1-A): (1) elicit the user’s requirements and (2) specify requirements. The
activities must be performed by Analysts.

The WorkProduct that the analysts must obtain after performing the activi-
ties is a requirements model: one task diagram for each kind of user, and a textual
and a graphical description for each leaf task. Figure 1-A shows the definition of
this discipline by means of the notation proposed in the SPEM.

2.1.2. The OO-Method. This discipline includes those activities that are related
to the model and generation of applications. These activities are based on the
development process of the OO-Method [9] and its strategy of automatic code
generation. Nowadays, the OO-Method approach has an industry-oriented imple-
mentation called OlivaNova Model Execution (ONME) [7] that has been developed
by CARE Technologies S.A.

Thus, the activities of this discipline are two (see figure 1-B): (1) define a con-
ceptual schema to represent the application requirements (from the requirements
model defined by analysts); and (2) generate code from the conceptual models that
implements an application. The first activity must be performed by OO-Method
modelers, and the WorkProduct that must obtain is a set of conceptual models:

86 Ruiz and Pelechano

class, dynamic (state transition and sequence diagrams) and functional models.
The second activity must be performed by ONME and the WorkProduct that
must obtain is the final application.

2.1.3. OOWS. This discipline includes those activities that are related to the gen-
eration of a Web application. These activities are based on the development process
proposed by the OOWS method [10] and its strategy of automatic code genera-
tion. Thus, the activities of this discipline are two (see figure 1-C): (1) defines the
conceptual models of the Web application (from the requirements and the class
model defined previously); and (2) generates the Web interface from the concep-
tual models that implements the Web functionality of the application generated
by the OO-Method discipline.

The first activity must be performed by OOWS modelers, and the WorkProd-
uct that must obtain is a set of conceptual models (user, navigation and presenta-
tion models). The second activity must be performed by the OOWS tool and the
WorkProduct that must obtain is a Web interface.

In order to clearly show how these activities should be performed and which
the relationships among them are, the next subsection introduces the activity se-
quencing. This sequencing describes both the order in which the different activities
within our process must be performed and the input and output WorkProducts of
each activity.

2.2. Sequencing of Activities

Figure 2 shows the activity sequencing of our process (following the activity di-
agram notation proposed by SPEM). According to this figure, our Web service
design process is defined as follows: first, analysts create a requirements model
after analyzing the user’s needs. Then, on the one hand the OO-Method modelers
define the OO-Method conceptual models of the application from the require-
ments, and the ONME tool automatically generates a software application. On
the other hand, OOWS modelers model the Web application and then the OOWS
tool generates the Web interface of this application. Finally, the operations of the
Web service are designed.

As we can see, there are dependencies between activities: the OO-Method
modelers need the requirements models to model the application; the OOWS
modelers need the requirements and the OO-Method models to model the Web
interface; and the Web service designer needs the requirements models, the class
models of the OO-Method discipline, and the user, navigation and presentation
models of the OOWS discipline to identify the operations of the Web service to
be published.

In the next section, we introduce a guide to support Web service designers
in the achievement of their activity.

Model Driven Design of WS Operations using WE Practices 87

Analysts

Elicit User’s
Requirements

Specify
Requirements

Requirements
Model

OO-Method
Modelers

OOWS
Modelers

Conceptual
Modelling

Web
Conceptual
Modelling

Dynamic
Model

Functional
Model

Class
Model

User
Model

Navigational
Model

Presentation
Model

Application Web
Interface

ONME

OOWS Tool
Web Service

Design

WSDL

Web Service
Designers

Figure 2. Activity sequencing

3. The Web service design activity

In this section we present a methodological guide to obtain, in a systematic way,
the operations that implement the requirements of a Web application in a SOA.

88 Ruiz and Pelechano

The operations that are related to the integration with third party systems are
out of the scope of this work. Information about this can be found in [15].

3.1. Identifying operations from Analysts’ WorkProduct

The WorkProduct that analysts must obtain after performing the activities is
a requirements model. The requirements model is based on the concept of task
[16]. This model is built in two main steps: (1) first, analysts must define a task
taxonomy for each kind of user that can interact with the system, where tasks
are decomposed into subtasks by following structural or temporal refinements; (2)
next, each task is described by analyzing the interaction that users require from
the system to achieve each tasks.

The operations detected from the task diagram provide operations to imple-
ment the functional requirements of a system. A task diagram identifies user goals
and the activity that a user performs to achieve these goals. Therefore, we think
that this diagram can help us to identify the public operations that must offer our
service in order to build Web applications that completely support user tasks. The
potential “users” can be persons, Web pages or other external applications.

We present a set of steps that can be followed to automatically identify the
operations. In the first place, we should traverse the task diagram paying attention
to two kind of tasks that are going to be selected as candidate operations to be
published: (1) those leaf tasks that do not participate in a structural relationship
(represented by solid arrows between a task and their subtasks); and (2) those
tasks that are parents of a structural relationship.

...
<wsdl:operation name="newPublication">
<wsdl:operation name="addMemberToPublication">
<wsdl:operation name="newMember">
<wsdl:operation name="modifyMember">
<wsdl:operation name="deleteMember">
...

W
S

D
L

Research
Group

Members ...

Publications Manage
Member

New
Publication

Add Member to
Publication

Add
Ph.D

Add
Ph.D student

Add
student

New
Member

Modify
Member

Delete
Member

|>

[]

[]>> [] []
*

*

Figure 3. Operations detected in the task diagram

Model Driven Design of WS Operations using WE Practices 89

In figure 3 we have a partial view of the description of how a researcher
can manage a research group. Following the steps previously presented, we de-
fine the next operations: newPublication, addMemberToPublication, newMember,
modifyMember and deleteMember.

Each task has associated: (1) a textual description that defines the goals and
the users that can achieve this task; and (2) a graphical description by means of
activity diagrams.

Operations arguments should be detected from the graphical descriptions
associated to tasks. In the graphical description, each node of the activity dia-
gram defines: (1) a system action (stereotyped with <<function>> or <<search>>
keyword); or (2) an interaction point (IP) (nodes stereotyped with <<input>> or
<<output>> keyword). Each IP defines an instant in the achievement of a task
where the user interacts with the system. In this context, the system actions per-
formed after a <<output>> IP, allow Web services designers to identify the entity
involved in the task. Thus, using this <<output>> IP and the <<input>> IP from
the graphical description together with the class diagram (a WorkProduct of the
OO-Method modelers), we can obtain the arguments of each operation. We detect
each participant class in an operation by matching the entities that are specified
in the node with the class diagram. For each identified class we add its type to the
arguments of the operation detected from this branch of the task tree.

<<output>>
Publication

*

<<search>>
Publication

<<output>>
Publication

1 <<function>>
addMemberToPublication

[*] [1]

...
<wsdl:operation name="addMemberToPublication">
 <wsdl:input message="tns:addMemberToPublicationSoapIn" />
 <wsdl:output message="tns:addMemberToPublicationSoapOut" />
</wsdl:operation>
...

W
S

D
L

<<input>>
Member

+create()
+destroy()
+modify()
+addMemberToPublication()

Publication
-title
-publicationYear
-publicationMonth
-publicationFile
-abstract
-validated
-status
-bibtex

Figure 4. Arguments of addMemberToPublication

90 Ruiz and Pelechano

Figure 4 shows the arguments for the operation addMemberToPublication that
has been previously defined. This operation is detected from the task Add Member
to Publication, so the arguments of this operation are taken from the graphical de-
scription of this task. This graphical description has the <<output>> IP Publication
which maps with the Publication class in the class diagram. Matching the addMem-
berToPublication task with the function of the Publication class that is associated,
we obtain the arguments for our Web service operation. So we add the argument
of Member type to the arguments of the operation addMemberToPublication.

Figure 5 shows the Web page that gives support to the execution of the
addMemberToPublication operation.

...
<wsdl:operation name="addMemberToPublication">
...

Figure 5. The implementation of addMemberToPublication

3.2. Identifying operations from OOWS modelers’ WorkProduct

The WorkProduct that OOWS modelers must obtain is a set of conceptual mod-
els (users, navigation and presentation models), that give support to the tasks
identified by analysts. These models allow (1) expressing what kind of users can
interact with the system and what system visibility they can have; (2) defining
the navigational semantics of the system; and (3) specifying its presentational
requirements.

3.2.1. User Model. The OOWS user diagram is used to detect kinds of users
(roles) and assign to them permissions to interact with the system, providing a
role-based access control (RBAC) [2]. The RBAC model gives us a guideline to

Model Driven Design of WS Operations using WE Practices 91

perform the access control in an application. This model requires a minimum of
five elements: users, roles, objects, operations and permissions. This model also
provides functions to define the functional specifications.

Afterwards, the operations of this group are detected from both the user
diagram and the RBAC model and are classified into three types:

• Those that provide support for the user identification: loginUser, logoutUser,
obtainRol, changeRol and remindPassword.

• Those that give support for the generic user administration: newUser,
modifyUser, deleteUser.

• Those that give support to the management of user’s permissions and roles:
newRol, deleteRol, addUserToRol, removeUserToRol, addPermission and
removePermission inherited from the RBAC model

Anonymous

Member

Administrator

...
<wsdl:operation name="loginUser">
<wsdl:operation name="logoutUser">
<wsdl:operation name="changeRol">
<wsdl:operation name="remindPassword">
<wsdl:operation name="newUser">
<wsdl:operation name="modifyUser">
...

Guest

Figure 6. WSDL based on the User Diagram

It is not necessary to publish all this functionality for every implementation.
So the Web service designer must decide which operations should be published.
We implement the following six operations in our running example (see figure 6):
loginUser, logoutUser, changeRol, remindPassword, newUser and modifyUser.

Figure 7 shows the Web page that gives support to the execution of the
loginUser operation.

92 Ruiz and Pelechano

...
<wsdl:operation name="loginUser">
...

Figure 7. The implementation of loginUser

3.2.2. Navigational Model. Once users have been identified, a structured and or-
ganized system view for each user type must be specified. These views are defined
over the Class Diagram, in terms of the visibility of class attributes, operations
and relationships. This model is built in two steps: (1) first, a global view over the
navigation is defined (Navigational maps); and (2) a detailed description of the
elements defined in the previous step is performed (Navigational Contexts).

The navigational map is depicted by means of a directed graph whose nodes
represent navigational contexts and its arcs represent navigational links that de-
fine the valid navigational paths over the system. The operations that define this
primitive allow the reuse of navigation facilitating the implementation of adap-
tation and personalization mechanisms. In this context, a proposal for describing
Adaptive Link-Hiding techniques in base of the description of Navigational Links
has been introduced in [11]. This group has two operations (see figure 8-A), one
for each kind of navigational link:

1. The explorationLink operation gives support for the implementation of the
exploration links (represented by dashed arrows). They can be activated from
any context of the navigational map providing access to the context where the
link ends. It returns the page links to those reachable navigational contexts
through an exploration link.

2. The sequenceLink(context) gives support for the implementation of the se-
quence links (represented by solid arrows). They represent a reachability re-
lationship between two contexts. This kind of link can be activated from the
context that defines the link source and provide access to the context where
the link ends. It returns the set of page links of the navigational contexts
accessible by the user from a specific context.

Figure 8-B shows the Web page where the result of the call of the explo-
rationLink operation is shown. This operation returns the page links (contexts)
that are reachable from somewhere of the Web application.

Model Driven Design of WS Operations using WE Practices 93

Member

«E»
Members

«S»
Member Detail

«E-Subsystem»
Publications

«E»
Resources

«S»
Resource Detail

«E»
Guests

«E»
Activities

«S»
Activity Detail

«E»
Group

«E»
Projects

«S»
Project Detail

«E»
ResearchLines

«S»
ResearchLine Detail

...
<wsdl:operation name="explorationLink">
<wsdl:operation name="sequenceLink">
...

...
<wsdl:operation name="explorationLink">
...

A) B)

Figure 8. Operations detected from the Client navigational map
and the implementation of the explorationLink operation

The navigational context defines operations to retrieve the information that
must be shown in each navigational context (a web page in the running example).
For each navigational context, we can define (see figure 9):

1. The retrieveViewName ([attributeID]) operation allows us to obtain the infor-
mation specified in the navigational context views. This operation returns (1)
a set of instances or (2) a specific instance of the classes defined in the context
view. We define an operation of this kind for each view defined in a naviga-
tional context. Figure 9 shows the operation detected from the navigational
context Members: retrieveMembers.

2. The getIndexedIndexName (attributes) operation gives support for the index
mechanisms. They provide an indexed access to the population of objects.
This operation returns the list of the resumed information defined in a given
index allowing the user to choose one item (instance) from the list. It is
defined for every index in a navigational context. An example of this operation
is shown in figure 9, where the operation getIndexedMember is identified from
the index of the context Members.

3. The retrievePopulationViewName (attribute*) operation gives support to pop-
ulation condition mechanisms. They define an object retrieval condition that
must be satisfied. This condition can be specified to any navigational class.
The operation can need one or more attributes, depending on the defini-
tion of the population filter. This operation returns a set of instances of the
class where the population filter is defined that fulfil the condition specified
by the user. We define an operation of this kind for each view defined in a
navigational context that has defined a population filter. Figure 9 shows the

94 Ruiz and Pelechano

<< context >>
Members

+addResource [Resource Detail]()

-name
-surname
-personalID
-email
-isDoctor
-isPhDStudent
-web
-photo

Clase5

+create()
+modify()
+destroy()

-phones
-status

Clase3

-name
-address
-web
-city
-state
-country

Clase4

-name
-acronym
-web

Clase2

ATTRIBUTE INDEX Members
ATTRIBUTES name, email, isPhD, WorkOn.Status
LINK ATTRIBUTES Name
DISTINCT VALUES

FILTER Member
ATTRIBUTE Name
TYPE APROXIMATE

...
<wsdl:operation name="retrieveMembers">
<wsdl:operation name="retrievePopulationMembers">
<wsdl:operation name="getIndexedMember">
<wsdl:operation name="searchMember">
<wsdl:operation name="operationLink">
...

Not hasgone

Figure 9. Operations detected from the navigational context

operation detected from the navigational context Members: retrievePopula-
tionMembers.

4. The searchFilterName (value) operation gives support to search filters mecha-
nisms. They allow filtering the space of objects that retrieve the navigational
context. This operation returns the set of instances of the manager class (and
its complementary classes) that fulfil the search conditions specified by the
user. An operation is obtained for each filter of a navigational context. Figure
9 shows the detection of the operation searchMember from the filter defined
in the context Member.

Moreover, the navigational map can also provide operations that sup-
port part of the implementation of the navigation defined in the navigational
model.

5. The operationLink (service) operation gives support to the implementation of
the operation links. Operation links represent the target navigational con-
text that the user will reach after an operation execution. This operation

Model Driven Design of WS Operations using WE Practices 95

returns the context (Web page) that the user accesses before one specific op-
eration is activated. Figure 9 shows operationLink detected from the operation
AddResource defined in the class Product.

...
<wsdl:operation name="searchMember">
...

Figure 10. The implementation of searchMember

Figure 10 shows a Web page in which the result of the operation searchMember
can be seen (defined from the filter of the Member Context in figure 9). In this
case, the filter condition is that the name of the member has the letter “M”. Then,
the web page of this figure shows all members related with “M”.

3.2.3. Presentation Model. Once the navigational model is built, modelers must
specify presentational requirements of web applications using a presentation model.
It is strongly based on the navigational model and it uses its navigational contexts
to define the presentation properties. Presentation requirements are specified by
means of patterns that are associated to the primitives of the navigational context.
The basic presentation patterns are:

• Information Paging. This pattern allows defining information “scrolling”. All
the instances are “broken” into “logical blocks”, so that only one block is
visible at a time. Mechanisms to move forward or backward are provided. The
required information is: (1) cardinality represents the number of instances
that make a block; and (2) access mode (sequential or random).

• Ordering Criteria. This pattern defines a class population ordering (ASCen-
dant or DESCen-dant).

• Information Layout. OOWS provides 4 basic layout patterns: register, tabu-
lar, master-detail and tree.

96 Ruiz and Pelechano

Member WorkOn

RGroup

Entity

Pattern:Register

Pattern: register
Order: Surname(ASC)
Pagination: Static Cardinality 4
Sequential Access Pattern:Register

Pattern: register

<< context >>
Members

Figure 11. Members Context Presentation Model

Figure 11 shows the presentation requirements specified for the Members
Navigational Context. According to these requirements the list of members pro-
vided by the context is shown in a register format. This list is grouped in blocks of
four members. The surname of each member is used to order them in an increase
way.

These presentation patterns, together with the specified navigation features,
capture the essential requirements for the construction of web interfaces. Thus,
Web service designers can identify two operations from this model:

1. The presentationInfo (operation, operationAttributes, pagination, order, patter)
operation, where operation is an operation published by the Web service,
operationAttributes is the set of attributes of that operation, and pagination,
order and patter are the values for the presentation patterns. This operation
returns a piece of Web page with the information retrieved presented with
the values defined by the user at the call.

...
<wsdl:operation name="presentationInfo">
...

Figure 12. The result of presentationInfo(searchMember)

Model Driven Design of WS Operations using WE Practices 97

Figure 12 shows the result of the operation searchMember. In this case,
the result must be presented as a piece of a Web page where the products
are shown in register, in groups of three elements and ordered by ascending
price.

2. The operation presentationContext (context) returns a Web page created for
the context attribute. This Web page follows the presentation patterns in-
dicated in the presentation model. To create the Web page, this operation
uses some the operations presented in this article: retrieveViewName for each
view defined in the context and explorationLink and sequenceLink for the link
pages. Moreover, if the context has some filter or index, then the Web page
will show these operations.

Figure 13. presentationContext(Members)

Figure 13 shows the Web page created as a result of the presentationCon-
text(Members) operation. The information retrieved from the Members view
is shown in register, in groups of four and ordered by surname increasing. In
addition, it shows links to those pages reachable since this context.

3.3. Tool support

In this section, we present a tool that helps Web service designers in the iden-
tification and design of the Web services operations. This tool also allows Web
service designers to associate a WSDL specification to a specific application. This

98 Ruiz and Pelechano

tool, which is called ITOW, automatically generates the WSDL specification of
the application modeled by the ONME and OOWS CASE tools (see figure 14).

ITOW provides an easy-to-use graphical interface. Before ITOW generates
the WSDL specification, it is necessary to configure the following properties:

• Load Project : Defines the XML file where the OO-Method and the OOWS
models are stored.

• Save Project : Defines the target location where the generated WSDL docu-
ment will be stored.

• URL: Defines the namespace of the Web application to be included in the
WSDL file.

• Kind of WSDL: Specifies the kind of WSDL file (document or RPC) that is
going to be generated.

• Generate: Indicates if the WSDL document has already been generated or
not.

WSDL

ITOW TOOL

Figure 14. Steps in the automatic generation of WSDL

Once we have configured these properties, the ITOW tool starts the trans-
formation process to obtain the WSDL document that defines Web services. This
transformation process follows the approach presented in this work.

4. Conclusions and Further Work

This article has presented an approach to introduce SOA and the Web services
technology as an extension of the OO-Method / OOWS method. We have presented
a methodological guide to help Web service designers to obtain the operations
that define the Web services from models. This guide can be generalized to other
Web Engineering Methods, because the OO-Method / OOWS method shares with
them the most common models and primitives taken as source to obtain the Web
services.

Model Driven Design of WS Operations using WE Practices 99

The ideas presented in this work have been already applied to the develop-
ment of several applications like the Web site http://oomethod.dsic.upv.es, which
supports the management of our research group and in the intranet management
system for the General Library of the Technical University of Valencia. Nowadays,
we are developing an e-commerce system and a travel agency. These two systems,
in addition to provide Web services, integrate functionality of third parties appli-
cations.

Several extensions to this work are under development. We are working on
integrating this approach on the ONME tool [7]. For this purpose, we are analyzing
the models provided by OO-Method / OOWS methods. Our intention is determine
how operations presented in this work can be implemented from the functionality
generated by the ONME tool. This allows us to provide a Web service with fully
operative operations.

We are also working on providing mechanisms that facilitate the integration
of Web applications with Third parties systems at the conceptual level [15]. When
third parties provide us their functionality as Web services, we proceed to the Web
service composition to achieve integration.

We have used the presentation model defined within the OOWS approach to
enrich the code generation process providing Web services that include presenta-
tional aspects. Our final objective is to generate reusable Web functionality that
provides relevant information (content and presentation) to potential consumers
[11].

References

[1] Ambler, S.W., Deriving Web services from UML models, Part 1: Establishing the pro-
cess. http://www-106.ibm.com/developerworks/webservices/library/ws-uml1/,
March 1, (2002).

[2] ANSI. Incits 359. American National Standard for Information technology. Role-
Based Access Control, (2004).

[3] Dolog, P., Model-driven navigation design for semantic web applications with the
UML-guide. In Maristella Matera and Sara Comai (eds.), Engineering Advanced
Web Applications. (2004)

[4] Gómez, J., & Cachero, C. , OO-H Method: extending UML to model web interfaces.
In information Modeling For internet Applications. P. van Bommel, Ed. Idea Group
Publishing, Hershey, PA, (2003). pp. 144-173.

[5] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., & Fraternali, P., Model-driven
design and deployment of service-enabled web applications. ACM Trans. Inter. Tech.
5, 3, (2005) pp. 439-479.

[6] Mellor, S.J., Clark, A.N., Futagami, T.: Model-driven development - Guest editor’s
introduction. IEEE Software, 20 (5):14- 18, Sept.-Oct. (2003).

[7] OlivaNova Model Execution System. CARE Technologies. Retrieve November 3,
(2005), from: http://www.care-t.com.

100 Ruiz and Pelechano

[8] Papazoglou, M.P. and Yang, J. Design methodology for Web services and business
processes. In Proceedings of the 3rd VLDB-TES workshop (Hong Kong, August,
2002). Springer, (2002), 54-64.

[9] Pastor, O., Gomez, J., Insfran, E., & Pelechano, V. : The OO-Method approach
for information systems modelling: from Object-Oriented conceptual modeling to
automated programming. Information Systems 26, (2001).pp 507–534.

[10] Pastor, O., Fons, J., Pelechano, V., & Abrahão, S. Conceptual modelling of Web ap-
plications: the OOWS approach, book chapter in Web Engineering - Theory and
Practice of Metrics and Measurement for Web Development, Mendes E. (Eds.),
Springer 2005, (2005). pp. 277-302.

[11] Rojas, G., Pelechano, V., & Fons, J.: A Model-Driven Approach to include Adaptive
Navigational Techniques in Web Applications. V International Workshop on Web
Oriented Software Technologies - IWWOST, Porto, Portugal. (2005).

[12] Ruiz, M., Valderas, P. & Pelechano, V.: “Applying a Web Engineering Method to
Design Web Services”. 6th International Conference on Service Oriented Computing
(ICSOC). Lecture Notes in Computer Science Vol. 3826/2005. (2005).

[13] Schwabe, D., Rossi, G. & Barbosa, D.J.: Systematic hypermedia application design
with OOHDM. Proc. ACM Conference on Hypertext. (1996). pp.166.

[14] Software Process Engineering Metamodel, version 1.1. Object Management Group.
http://www.omg.org/technology/documents/formal/spem.htm

[15] Torres, V., Pelechano, V., Ruiz, M., & Valderas, P.: A model driven approach for
the integration of external functionality in Web applications. The Travel Agency
System. Workshop on Model-driven Web Engineering (MDWE). (2005).

[16] Valderas, P., Fons, J., Pelechano, V.: Developing E-Commerce Application from
Task-Based Descriptions. 6th International Conference on Electronic Commerce and
Web Technologies (EC-WEB). (2005).

Marta Ruiz
Universidad Politécnica de Valencia
Camı́ de Vera s/n
Valencia-46022
Spain
e-mail: mruiz@dsic.upv.es

Vicente Pelechano
Universidad Politécnica de Valencia
Camı́ de Vera s/n
Valencia-46022
Spain
e-mail: pele@dsic.upv.es

Whitestein Series in Software Agent Technologies, 101–116
c© 2007 Birkhäuser Verlag Basel/Switzerland

A Logic-based Approach for Service Discovery
with Composition Support

Adina Ŝırbu, Ioan Toma, Dumitru Roman

Abstract. Web service discovery given a user request becomes a fundamental
challenge in a service-oriented world. The overall success of Service Oriented
Architectures (SOA) however will very much depend on automatic and accu-
rate solutions for the discovery problem. Furthermore such solutions need to
be efficiently integrated with other service related tasks (e.g. service compo-
sition). In this paper we propose a logic based approach for service discovery
with composition support. First, we provide a formal model for service discov-
ery based on semantic description of services and then we show how such an
approach can be integrated with service composition. Furthermore we provide
a prototype implementation that validates our theoretical solution.

1. Introduction

Service Oriented Architectures are emerging as a new computing paradigm for re-
alizing distributed applications. They promote a service-based view on the world,
where providers and clients are exposing and invoking functionalities in a stan-
dardized manner. Web services are one possible approach for implementing SOA
ideas. They are based on technologies like WSDL [3], SOAP [14] and UDDI [2].
Despite their increasing acceptance in industry, Web services have some important
drawbacks which stem mainly from the lack of machine understandable descrip-
tions. More precisely, service related tasks like discovery, negotiation, adaptation,
and composition cannot be performed by machines without the explicit interven-
tion of a human programmer. Semantic Web services were proposed as a new
paradigm that helps overcome current Web service technology limitations by pro-
viding semantically richer service descriptions. This enables machines to reason on
these descriptions and to perform service related tasks in a more autonomous and
accurate manner.

Service discovery, the task of finding relevant services given a user request,
is one task where semantic based approaches can bring more automatization and

102 Ŝırbu, Toma and Roman

accuracy. Solutions for discovery were proposed in [1, 9, 11, 12, 13]. However, most
of the existing literature in this field refers to detecting matches by comparing the
inputs and outputs of requested, respectively provided services. For example, the
matching algorithms described in [11] and [9] depend only on the logical relation
between the concepts associated with the inputs and outputs. Moreover, many of
the proposed solutions are lacking a suitable integration with other service related
tasks. Our solution is focused exactly on these two aspects. We provide a formal
model for service discovery based on semantic description of services and we show
how such an approach can be integrated with service composition. Furthermore
we provide a prototype implementation that proves our ideas.

The paper is organized as follows: Section 2 provides the technical solution
for our service discovery approach. It first gives some insights on the service model
we are using for semantically describing Web services - the Web Service Modeling
Ontology (WSMO) and its associated language - the Web service Modeling Lan-
guage (WSML). The formal model for our discovery approach is described then
in the rest of the section. Section 3 presents the prototype we have developed
based on the technical solution provided in Section 2. The prototypical solution
is described in terms of architecture and behavior. Furthermore a concrete run
through a scenario is presented in order to exemplify the work of our prototype.
Finally, Section 4 discusses the related work and Section 5 concludes the paper
and presents our future work.

2. Discovery Approach

The conceptual model and the language we are using for semantically describing
Web services is introduced in section 2.1. Based on this model, we present in
section 2.2 two alternatives for Web service matchmaking, and for each of them
the corresponding algorithm.

2.1. Modeling services
The discovery process in general, and service discovery in particular, depends

heavily on how the entities that are to be discovered, in our case Web services,
are modeled. For our logic based service discovery solution we adopt the Web
Service Modeling Ontology (WSMO) [8] as conceptual model for services and
its associated Web Service Modeling Language (WSML) [4] as a language for
semantically describing Web services. Some of the reasons behind this decision are:
(1) WSMO is one of the major initiatives in Semantic Web services area. It provides
a semantic-based solution for describing services which is crucial for a logic-based
discovery approach such as ours, (2) WSMO provides a clean modeling solution for
services, making a clear distinction between the user requests (goals in WSMO) and
the services descriptions (Web services in WSMO), (3) WSML provides different
semantic expressivity support for describing services. For our approach we consider
one particular variant of the WSML languages family, namely WSML-Flight which
offers a reasonable compromise between expressivity and decidability.

A Logic-based Approach for Service Discovery 103

In a nutshell, WSMO provides an overall framework for Semantic Web ser-
vices that aims at supporting automated Web service discovery, selection, compo-
sition, mediation, execution, monitoring, etc. It follows the design principles from
the Web Service Modeling Framework (WSMF) [5] and provides four top-level
notions related to Semantic Web services: (1) Ontologies that define a common
agreed upon terminology used in the description of all others WSMO elements, (2)
Goals which are descriptions of the objectives a client may have when consulting a
service in terms of functionality, behavior and quality of service, (3) Web services
are descriptions of services and (4) Mediators which address heterogeneity prob-
lems that occur between descriptions at different levels: data, protocol or process
level.

For our discovery approach, the first three top-level WSMO elements, namely
ontologies, Web services and goals are considered. Although we don’t use the medi-
ation support, our solution can be easily extended to integrate mediation aspects.
In the following, all Web services, goals and ontologies are specified using WSML.
Furthermore, since our approach matches goals and Web services based on the
functionality requested, respectively provided, we focus on describing the func-
tional aspects of Web services and goals. Therefore, we leave aside the description
of the interfaces, which by definition provide information on how the functionality
of a Web service can be achieved. In WSMO, the functional aspects of a Web
service or a goal are grouped under an element called capability. A capability cap-
tures in terms of preconditions and assumptions, on one hand, and postconditions
and effects, on the other hand, a set of conditions that have to hold before and
respectively after the execution of the service. More precisely, the pre/postcondi-
tions refer to the information space of the Web service, while the assumptions and
effects refer to the state of the world.

For exemplification purposes we introduce service and goal descriptions from
the real-world use cases developed in the EU project Adaptive Service Grid (ASG)1.

In this particular use-case, we consider a domain ontology that models a
telematics domain. Listing 1 displays a fragment of this ontology, defining the
top-level concepts of person, phone number, location, and a relation that holds
between an entity and its location. Furthermore, this fragment includes an axiom
stating that the location of a phone is also the location of the owner of the phone.

ontology ”domainOntology.wsml”

nonFunctionalProperties

dc#title hasValue ”Telematics domain ontology”

endNonFunctionalProperties

concept person

name ofType string

number ofType phoneNumber

concept phoneNumber

concept location

1http://asg-platform.org

104 Ŝırbu, Toma and Roman

hasCoordinates ofType coordinates

relation hasLocation/2

nonFunctionalProperties

dc#relation hasValue hasLocationDef

endNonFunctionalProperties

axiom hasLocationDef

definedBy

?person[number hasValue ?phoneNr] memberOf person

and ?loc memberOf location

and hasLocation(?phoneNr, ?loc)

implies hasLocation(?person, ?loc).

Listing 1

Based on this ontology, a telecommunication company offers a phone location
service. This service requires as input the number of a mobile phone. This can be
seen as a condition over the information space before the execution of the service
and therefore is modeled as a precondition. The service invoker receives as result the
location of the mobile phone. This can be seen as a condition over the information
space after the execution of the service and therefore is modeled as a postcondition.
The complete WSML description of the service is provided in the Listing 2.

webService ”MobTelPhoneLocationService”

nonFunctionalProperties

dc#title hasValue ”MobTel phone location service”

dc#publisher hasValue ”MobTel”

endNonFunctionalProperties

importsOntology ”domainOntology.wsml”

capability phoneLocationServiceCapability

sharedVariables {?phoneNumber}
precondition

definedBy

?phoneNumber memberOf dO#phoneNumber.

postcondition

definedBy

dO#hasLocation(?phoneNumber, ?location)

and ?location memberOf dO#location.

Listing 2

Further on, consider the generic goal of finding the location of a person,
knowing the name and the phone number of this person. A goal in WSMO is
described in a similar manner to a Web service. Listing 3 represents the formal
description of the goal template. A concrete request can then be defined at runtime,
by instantiating the goal template with concrete inputs.

goal ”findPersonLocation.wsml”

nonFunctionalProperties

dc#title hasValue ”Find person location goal”

endNonFunctionalProperties

importsOntology ”domainOntology.wsml”

capability findPersonLocationCapability

sharedVariables {?person}
precondition

definedBy

A Logic-based Approach for Service Discovery 105

?person[

dO#name hasValue ?name,

dO#number hasValue ?phoneNr

] memberOf dO#person.

postcondition

definedBy

dO#hasLocation(?person, ?location)

and ?location memberOf dO#location.

Listing 3

The user can specify conditions on the information space that hold before the
invocation of the matching service, in this case, that the name and phone number
of the person are known. These aspects are modeled as preconditions in the goal.
In the state of the world after the execution of a suitable service, the location of
the person is known. Therefore we model this as a postcondition of the goal.

The discovery solution we are introducing in this paper will identify, using
the background ontology, that the listed Web service represents an exact match
for the goal. More details on how services and goals descriptions are used by our
solution are provided in Section 3.2.

2.2. Matching Web services and requests
We consider two alternatives for Web service matchmaking, each of them applying
a different algorithm. They correspond to different phases in the Web service
composition process.

The first matchmaking alternative is to locate the Web services that directly
match a user request in a given state. If no Web services are discovered, the
composer can construct a valid solution that fully satisfies the goal using the
second alternative, which identifies all the Web services that are relevant to the
request in the given state. More specifically, the service composer can construct a
solution by successively discovering the executable services and virtually executing
them until the state satisfies the goal. For a description of the service composer
used in the context of ASG, we refer the reader to [10].

In section 2.1, we have presented our state-based approach to describing Web
services and goals, which allows us to express Web services that can change the
state of the world. This approach is characterized by the use of pre-state and
post-state constraints for specifying the intended execution of the Web service. In
WSMO, the pre-state constraints correspond to postconditions and assumptions,
while the post-state constraints correspond to postconditions and effects. In this
context, we have not made explicit distinction between effects and postconditions.
Together, they represent the outcome of the service execution.

Both matchmaking algorithms take into account the dependence of outputs
and effects of the service execution on the concrete input provided by the user.
Therefore, they operate at the level of rich semantic description of services, as
introduced in [6].
2.2.1. Matching based on capabilities. The first algorithm for service matchmak-
ing identifies the Web services whose capabilities fully match the requester goal.

106 Ŝırbu, Toma and Roman

Of the four possible types of match described in [6], we are taking into con-
sideration only exact-match (the Web service description and the goal description
coincide) and plugin-match (the sets of objects that the Web service claims to
deliver is a superset of the set of objects that are relevant to the requestor). The
other two cases (subsumes-match and intersection-match) are not considered valid
matches in this context, because the services cannot fully satisfy the goal.

We consider the states of the world to be logical theories. A state of the world
comprises the set of registered ontologies and, optionally, an additional set of facts.
These facts can be given explicitly by means of an initial state. They can also be
the outcome of previous virtual execution of services, because the execution of a
service in a given state is considered to change the state of the world, resulting in
an update to the logical theory.

In order to determine if the capability of a service satisfies a requester goal one
must reason about the resulting updates. Reasoning about updates raises the frame
problem. A solution to avoid the frame problem is offered by Transaction Logic,
an extension to First-order Logic that allows to specify the dynamics of knowledge
bases in a declarative way. The theoretical approach employing Transaction Logic
for Web service discovery that has been used as theoretical foundation for the
implementation of this matchmaking algorithm can be found in [7].

The algorithm for service matchmaking based on capabilities implemented in
our prototype is presented in Listing 4. The ontologies, the Web services and the
goal are assumed to be loaded prior to the invocation of the matchmaking process.

1 algorithm Matchmaking based on capabilities
2 input: initial state I, goal G
3 output: map of <Web service S, set of <variable binding β>>

4
5 register state I
6 for each registered Web service S
7 if holds preS then

8 for each variable binding β

9 if not holds (eff S (β) and outS(β)) then

10 insert (eff S(β) and outS(β))
11 if holds (eff G and outG) then

12 add β to set of <β>

13 endif

14 delete (eff S (β) and outS (β))
15 endif

16 endfor

17 if not empty (set of <β>) then

18 add (S, set of <β>) to result map
19 endif

20 endif

A Logic-based Approach for Service Discovery 107

21 endfor

22 unregister state I
23 return result map

Listing 4

We consider a ”stateless” functioning of the prototype, meaning that the
relevant state information is given as input to each state-dependent operation.
The state is loaded and respectively unloaded (Listing 4: lines 5, 22).

The available information sources at this point are:

• the set of ontologies referred to by both goal and Web service descriptions
• the knowledge encoded in the state given as input to the matchmaking process
• the information that may be provided by the goal description itself

We select those registered Web services that are executable. In this context,
a Web service S is considered executable if there exist input information in the
available information sources such that the preconditions (what must be valid
in order for the service to be executed) are fulfilled, while the effects and the
postconditions (what the service guarantees after its execution) are not yet fulfilled.
The assumptions describe conditions on information that is available only at run-
time, and thus are not checked.

Therefore, S is executable if there exists at least one variable binding that
satisfies the preconditions preS , but not the effects effS and the postconditions
outS (Listing 4: lines 6-9). Checking that the effects and the postconditions of
the Web service are not satisfied for the input that satisfies the preconditions
is necessary due to the fact that in this context we wish to allow only a single
execution of a Web service for a given input. Note however that a Web service can
be executed an arbitrary number of times, with different input information.

A variable binding is a set of < variable, value > pairs capturing the input
information for which the service preconditions hold. More precisely, a variable
binding is a complete set of bindings

< x1, v1 >, < x2, v2 >, ..., < xn, vn >

where x1, ..., xn are the variables occurring in the precondition, and v1, ..., vn is
a set of constants. There can be several variable bindings for the same service,
and all further tests on the service effects and postconditions will depend on the
particular variable binding (Listing 4: line 9).

An executable service is considered a match if, for at least one of the variable
bindings, the outcome of the service S satisfies the outcome requested in the goal
G. We perform this test by assuming the effects and the postconditions of the
service for each variable binding and verifying if the effects and the postconditions
of the goal hold in the resulting state (Listing 4: lines 10-14).

The set of matching services, and for each service all valid variable bindings,
is then returned (Listing 4: line 23).

108 Ŝırbu, Toma and Roman

2.2.2. Matching for Web service composition. The second matchmaking algo-
rithm queries for the Web services that are relevant to composition. In this context,
we consider a Web service to be relevant if it is executable in the given state.

1 algorithm Matchmaking on preconditions
2 input: initial state I
3 output: map of <Web service S, set of <variable binding β>>

4
5 register state I
6 for each registered service S
7 if holds preS then

8 for each variable binding β

9 if not holds (eff S(β) and outS(β)) then

10 add β to set of <β>

11 endif

12 endfor

13 if not empty (set of <β>) then

14 add (S, set of <β>) to result map
15 endif

16 endif

17 endfor

18 unregister state I
19 return result map

Listing 5

Listing 5 presents the algorithm. Similar to the previous algorithm, the on-
tologies and the services are assumed to be loaded in the reasoner prior to invo-
cation of the matchmaking process. The state is loaded and respectively unloaded
(Listing 5: lines 5, 18).

The available information sources for this second algorithm are:
• the set of the ontologies referred by the Web service descriptions
• the knowledge encoded in the state given as input to the matchmaking process

A Web service is considered a match in the context of this algorithm if it is
executable. As already defined, a Web service S is executable if there exists input
information such that the preconditions preS are fulfilled, while the effects effS
and the postconditions outS are not yet fulfilled (Listing 5: lines 6-9).

The set of executable Web services, and for each Web service all correspond-
ing variable bindings, is then returned (Listing 5: line 19).

3. A Prototype System for Service Discovery

We have developed a prototype system that implements the matchmaking al-
gorithms presented in Section 2.2. Furthermore we have tested and validated our

A Logic-based Approach for Service Discovery 109

prototype on a real-world scenario developed in the ASG project, called Attraction
Booking Scenario. We now provide a high level overview of our system in terms of
its architecture, components and interaction between them. The discovery process
is afterwards exemplified with a run-through of the previously mentioned scenario.

3.1. System overview
The high level architecture of our prototype system is provided in Figure 1. It

consists of a set of loosely-coupled components which includes: a System Interface,
a Semantic Matchmaker, a Reasoner and a Repository.

Figure 1. Discovery system architecture.

The system itself acts as a component having a defined System Interface. This
interface offers a programmatic access to the system. Agents that act on behalf of
service providers or service requestors can invoke functionalities exposed through
this interface. The interface includes methods for managing semantic descriptions
(e.g. register, unregister ontologies, services, goals), methods for querying the rea-
soner and methods for matching goals against registered services.

The Semantic Matchmaker is one of the core components of the Discov-
ery System. It implements the matchmaking algorithms described in Section 2.2.
It uses the reasoner to determine if the requested capability specified in a goal
matches the capabilities of registered services.

The Reasoner provides querying and inference support required by the Se-
mantic Matchmaker component. More precisely it supports a set of reasoning tasks
like query answering with ontologies. As a backbone reasoner we have used the

110 Ŝırbu, Toma and Roman

F lora− 2 system2, integrated into the overall discovery system by using a generic
framework called wsml2reasoner3. The framework allows easy integration of dif-
ferent reasoning engines for WSML language.

The Repository stores semantic descriptions like ontologies, goals and Web
services. It provides methods to register and unregister the semantic descriptions
mentioned before. Additionally, sets of facts that represent the states of the world
at certain points in time can be registered or unregistered.

3.2. Application to use case scenario
The use case presented in the following paragraphs is a simplified fragment from
the Attraction Booking scenario developed in ASG4. In this scenario taken from the
telematics domain, a customer uses a mobile device, such as a handheld, to retrieve
information on the attractions located in the nearby surroundings. Depending
on the information received, the customer can additionally request for attraction
details (e.g. the starting time of the event), for the description of a route leading
to the attraction or, if the attraction is bookable, for a reservation to the event.

The domain ontology used in this scenario defines concepts, relations and
instances associated to attractions (e.g. attraction, attractionBag, attractionCate-
gory), locations (e.g. city, street, coordinates), mobile devices (e.g. phoneNumber).
Listing 6 is an additional fragment of the ontology introduced in Listing 1, that
refers to attractions. Besides concepts and instances associated to attractions and
the search for attractions, we introduce an axiom which specifies that all events
are bookable.

concept attraction

name ofType string

description ofType string

bookingPossible ofType boolean

priceRangeA ofType priceRange

categories ofType (1 ∗) attractionCategory

locationA ofType location

concept event subConceptOf attraction

concept attractionBag

nonFunctionalProperties

dc#description hasValue ”a list of attractions”

endNonFunctionalProperties

members ofType (1 ∗) attraction

concept attractionQuery

keyword ofType string

numberOfResults ofType integer

attractionCategories ofType (1 ∗) attractionCategory

concept attractionCategory

instance categoryCinema memberOf attractionCategory

2http://flora.sourceforge.net
3http://dev1.deri.at/wsml2reasoner/
4https://asg-platform.org/

A Logic-based Approach for Service Discovery 111

instance categoryMusic memberOf attractionCategory

instance categoryEatAndDrink memberOf attractionCategory

axiom allEventsAreBookableDef

definedBy

?attraction memberOf Event implies

?attraction[bookingPossible hasValue true].

Listing 6

Further on, we introduce two Web services from the Attraction Booking ser-
vice space, that provide information about attractions.
CinemaxXAttractionInformationService. - modeled after CinemaxX.de, this ser-
vice retrieves a set of cinema events using as search criteria the location and an
attraction query. The service requires that the cinema category is explicitly spec-
ified in the attraction query.

webService ”CinemaxXAttractionInfoService.wsml”

nfp

dc#title hasValue ”CinemaxX Attraction Information Service”

dc#publisher hasValue ”CinemaxX.de”

endnfp

importsOntology ”domainOntology.wsml”

capability CinemaxXAttractionInfoCapability

precondition

definedBy

?location memberOf dO#location

and ?query[dO#attractionCategories hasValue dO#cinema] memberOf dO#attractionQuery.

postcondition

definedBy

?bagOfEvents[dO#members hasValue ?event] memberOf dO#attractionBag

and ?event memberOf dO#event.

Listing 7

StarbucksAttractionInfoService. - similar to the CinemaxX Web service, this ser-
vice retrieves a set of bookable attractions if a location and an attraction query are
given. The service requires that the attraction category list present in the query
to contain the ”eat-and-drink” category.

webService ”StarbucksAttractionInfoService.wsml”

nfp

dc#title hasValue ”Starbucks Attraction Information Service”

dc#publisher hasValue ”Starbucks.com”

endnfp

importsOntology ”domainOntology.wsml”

capability StarbucksAttractionInfoCapability

precondition

definedBy

?location memberOf dO#location

and ?query[dO#attractionCategories hasValue dO#eatAndDrink] memberOf dO#attractionQuery.

postcondition

definedBy

?attrBag[dO#members hasValue ?attraction] memberOf dO#attractionBag

and ?attraction[dO#bookingPossible hasValue true] memberOf dO#attraction.

Listing 8

112 Ŝırbu, Toma and Roman

3.2.1. Matching based on capabilities. Consider a generic goal of finding attrac-
tions that can be booked, located in the nearby surroundings of the user. The user
request we wish to model is equivalent to the following natural language specifi-
cation: ”Given a query that specifies the categories of attractions, the problem is
solved when the list of bookable attractions is known.” The formal specification
of the request is given in Listing 9.

goal ”findBookableAttractionsGoal.wsml”

nfp

dc#title hasValue ”Find Bookable Attractions Goal”

endnfp

importsOntology ”domainOntology.wsml”

capability findBookableAttractionsCapability

precondition

definedBy

?query[dO#attractionCategories hasValue ?category] memberOf dO#attractionQuery.

postcondition

definedBy

?bookableAttrBag[dO#members hasValue ?bookableAttr] memberOf dO#attractionBag

and ?bookableAttr[dO#bookingPossible hasValue true] memberOf dO#attraction.

Listing 9

The user input is captured in the initial state of the problem (Listing 10),
which defines a person, a location and an attraction query specifying a list of
categories.

ontology ”initialState.wsml”

importsOntology ”domainOntology.wsml”

instance me memberOf dO#person

instance myLocation memberOf dO#location

relationInstance dO#hasLocation(me, myLocation)

instance myQuery memberOf dO#attractionQuery

dO#attractionCategories hasValue {dO#cinema, dO#music}
Listing 10

The discovery process starts by checking if the goal holds in the initial state.
Since the goal postcondition is not satisfied for the initial state, the next phase is
service matchmaking based on capabilities, according to the algorithm presented
in 2.2.1.

The algorithm analyzes every registered Web service. The preconditions in
the CinemaxX Web service are fulfilled, and using the background ontology we
determine that the outcome advertised in the Web service satisfies the outcome
requested in the goal. The CinemaxX attraction information service is thus con-
sidered a match. On the other hand, even though it advertises only attractions
that can be booked (and thus meets the goal postcondition), the Starbucks Web
service is not a valid match, because its preconditions are not satisfied.

The algorithm returns the identifier of the matching Web service, together
with the corresponding variable binding.

A Logic-based Approach for Service Discovery 113

Service:

CinemaxXAttractionInfoService.wsml

Service Variables Binding:

location = initialState#myLocation

query = initialState#myQuery

Listing 11

3.2.2. Matching for Web service composition. Further on, we present a run-through
that uses for matchmaking the algorithm defined in 2.2.2.

In order to simulate the Web service composition, we add to the service
repository the phone location service introduced in section 2.1.

We consider the same generic goal of finding attractions that can be booked.
For this second example, the initial state specifies the user, the phone number and
the attraction query. However, in this initial state, no information related to the
location of the user is known.

ontology ”altInitialState.wsml”

importsOntology ”domainOntology.wsml”

instance myNumber memberOf dO#phoneNumber

instance me memberOf dO#person

dO#number hasValue myNumber

instance myQuery memberOf dO#attractionQuery

dO#attractionCategories hasValue {dO#cinema, dO#music}
Listing 12

The simulation of the service composition process consists of one or more
iterations through a series of steps. The steps are executed in the following order:

1. check if the goal holds in the current state. If true exit, else go to 2;
2. query for executable services. If no service is discovered exit, else go to 3;
3. virtually execute one of the discovered services.

First iteration: Testing whether the goal is reached in the initial state returns
false. We proceed to the next step, finding executable services. The result contains
only the phone location service, as it is the only Web service whose preconditions
are satisfied (Listing 13).

In case more executable Web services are found, the composition planner can
employ a complex approach for selecting the best matching Web service, while
also taking into consideration non-functional properties like optimization criteria
(e.g. price or speed) and static restrictions (e.g. only services from provider X).

Service:

MobTelPhoneLocationService.wsml

Service Variables Binding:

phoneNumber = altInitialState#myNumber

Listing 13

We start constructing the first alternative with the virtual execution of the
phone location service. By assuming the outcome of this service, a dummy instance

114 Ŝırbu, Toma and Roman

of type location is created and related to the phone number. Listing 14 gives the
equivalent WSML description of the inserted facts.

domainOntology#location1 memberOf domainOntology#location.

domainOntology#hasLocation(altInitialState#myNumber, domainOntology#location1).

Listing 14

Second iteration: The test whether we have reached the goal returns false.
The result of querying for the executable services in the current virtual state

is the CinemaxX Web service, as it is the only service whose preconditions are
satisfied.

Service:

CinemaxXAttractionInfoService.wsml

Service Variables Binding:

location = domainOntology#location1

query = initialState#myQuery

Listing 15

The virtual execution of the CinemaxX service adds a new dummy instance of
the attraction bag concept, containing one dummy instance of the event concept.
Listing 16 displays the WSML description of the added facts.

domainOntology#event1 memberOf domainOntology#event.

domainOntology#attractionBag1[

domainOntology#members hasValue domainOntology#event1

] memberOf domainOntology#attractionBag.

Listing 16

Third iteration: Testing whether the goal was reached yields true.
Goal Variables Binding:

bookableAttrBag = domainOntology#attractionBag1

bookableAttr = domainOntology#event1

Listing 17

The output of the presented run-through is a possible service execution plan
that can be constructed by a service composition planner. In this execution plan
Mobtel phone location service and CinemaxX attraction information service are
composed in order to achieve the user goal. Alternative service execution plans
can be achieved in case more executable services are discovered at each step.

4. Related Work

The automatic discovery of services is nowadays a very popular research topic.
Many solutions have been proposed ranging from pure syntactic to highly logic
based approaches. However many of them lack a clear discovery model and a
formal specification of the discovery process. Furthermore many of them cannot
be easily integrated with solutions for other service related tasks.

Approaches like [9, 11], although logic-based, are missing a clear discovery
model. These approaches are also too general and is not clear how they can support
other service related tasks like service composition.

A Logic-based Approach for Service Discovery 115

Same holds for other approaches (e.g. [13, 1])that were mainly provided to
work in distributed environments like P2P. Besides the lack of clear discovery
model and support for other service related tasks, many of these approaches also
lack a formal, concise algorithms for service discovery.

5. Conclusions and Future Work

In this paper we presented a logic based approach for service discovery that can be
easily used by service composition modules. Two kinds of algorithms for service
discovery were presented, one based on capability matching, the other on sup-
porting service composition. Furthermore we have implemented a proof of concept
prototype that validates our solution on real use-case scenarios. As future work we
plan to compare our solution and implementation against other service discovery
solutions. Also, we plan to refine our solution to include the possibility of ranking
the matching Web services, the problem of ranking being one of the main chal-
lenges in Web service discovery. Performance and scalability tests are also left as
future work.

Acknowledgements

The work is funded by the European Commission under the projects ASG, DIP,
enIRaF, InfraWebs, Knowledge Web, Musing, Salero, SEKT, Seemp, Semantic-
GOV, Super, SWING and TripCom; by Science Foundation Ireland under the
DERI-Lion Grant No.SFI/02/CE1/I13 ; by the FIT-IT (Forschung, Innovation,
Technologie - Informationstechnologie) under the projects Grisino, RW2, SemNet-
Man, SeNSE and TSC.

References

[1] Rama Akkiraju, Richard Goodwin, Prashant Doshi, and Sascha Roeder. A method
for semantically enhancing the service discovery capabilities of UDDI. In Subbarao
Kambhampati and Craig A. Knoblock, editors, Proceedings of the IJCAI-03 Work-
shop on Information Integration on the Web (IIWeb-03), pages 87–92, 2003.

[2] T. Bellwood, L. Clment, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. Uddi version 3.0.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, July 2002.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services de-
scription language (wsdl) 1.1. http://www.w3.org/TR/wsdl, March 2001.

[4] Jos de Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia Predoiu,
Michael Kifer, and Dieter Fensel. The Web Service Modeling Language WSML.
Technical report, WSML, 2005. WSML Final Draft D16.1v0.21. http://www.wsmo.
org/TR/d16/d16.1/v0.21/.

[5] Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework WSMF.
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

116 Ŝırbu, Toma and Roman

[6] Uwe Keller, Ruben Lara, Axel Polleres, Ioan Toma, Michael Kiffer, and Dieter Fensel.
WSMO discovery. Working Draft D5.1v0.1, WSMO, 2004. http://www.wsmo.org/
TR/d5/d5.1/v0.1/.

[7] Michael Kifer, Rubén Lara, Axel Polleres, Chang Zhao, Uwe Keller, Holger Lausen,
and Dieter Fensel. A logical framework for web service discovery. In ISWC 2004
Workshop on Semantic Web Services: Preparing to Meet the World of Business
Applications, volume 119, Hiroshima, Japan, 2004. CEUR Workshop Proceedings.

[8] H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontol-
ogy (WSMO). W3C Member Submission 3 June 2005, 2005. http://www.w3.org/
Submission/WSMO/.

[9] Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary, May 2003.

[10] Harald Meyer and Mathias Weske. Automated service composition using heuristic
search. In Proceedings of the Fourth International Conference on Business Process
Management, volume 4102 of Lecture Notes in Computer Science, Vienna, Austria,
2006.

[11] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In I. Horrocks and J. Handler, editors, 1st Int. Semantic Web
Conference (ISWC), pages 333–347. Springer Verlag, 2002.

[12] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems, pages 173–203, 2002.

[13] K. Verma, K. Sivashanmugam, A. Sheth, and A. Patil. Meteor-s wsdi: A scalable
p2p infrastructure of registries for semantic publication and discovery of web services.
Journal of Information Technology and Management, 2004.

[14] W3C. SOAP Version 1.2 Part 0: Primer, June 2003.

Adina Ŝırbu, Ioan Toma, Dumitru Roman
Digital Enterprise Research Institute
University of Innsbruck
Technikerstrasse 21a
6020 Innsbruck, Austria
e-mail: adina.sirbu@deri.org, ioan.toma@deri.org, dumitru.roman@deri.org

Whitestein Series in Software Agent Technologies, 117–133
c© 2007 Birkhäuser Verlag Basel/Switzerland

Mobile and Dynamic Web Services

Elena Sánchez-Nielsen, Sandra Mart́ın-Ruiz and Jorge
Rodŕıguez-Pedrianes

Abstract. Making mobile phones capable of consuming Web services over
wireless networks is a challenging task because of the different issues to be
addressed and the limited resources of mobile devices. In this paper, we focus
on the issue of how to perform dynamic discovery and invocation of Web ser-
vices from mobile phones when a J2ME wireless middleware is used. In order
to solve the limitations of the middleware platform when mobile phones act
as Web services requestor we propose a Web service based dynamic proxy be-
tween service providers and mobile consumers. With this approach, we provide
the following features to mobile devices: (1) support of dynamic binding, (2)
support of UDDI specification, (3) support of SOAP messages with encoded
representation and (4) handling of complex data types. The paper includes the
description of the dynamic proxy, implementation and experimental results
with the performance of the approach proposed.

Keywords. Web services, mobile phones, dynamic discovery, dynamic invoca-
tion.

1. Introduction

The use of Web services (WSs) in mobile phones allows users to discover and
access to digital content and services anywhere and anytime. The access to these
resources in a wired-wireless system involves: service provisioning, service discovery
and service execution.

The need of service providers to add new capabilities at any time and in turn
give mobile consumers a huge choice of available services at runtime requires a
dynamic discovery and invocation process. The use of this process brings a number
of benefits to mobile users such as to require no prior knowledge of available services
nor to require updating clients applications when new services are incorporated at
runtime.

Dynamic adaptive middleware for mobile computing has been proposed with
the purpose of adapting applications to the current context [18, 19], frameworks for

118 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

Web services provisioning in a static environment of fixed and mobile computing
have been described in [22] and approaches for provisioning mobile services in crit-
ical environments have been outlined in [23]. However, no significant frameworks
with experimental results have been carried out to allow access to Web services
from mobile phones at runtime without prior knowledge of available services due
to the current limitations of extending the Web service technology into the wireless
world by the key commercial players.

This paper describes our approach to addressing dynamic discovery and in-
vocation when mobile phones act as WS requestor at runtime, its implementation
and performance when J2ME middleware platform [10] is used.

The remainder of this paper is organized as follows. Section 2 introduces the
different issues related to invoke Web services from mobile phones and the related
work about mobile devices acting as WS requestor. Section 3 describes the current
restrictions to design mobile client applications to access to Web services when
J2ME development platform is used. Focused on these limitations, we propose
to introduce a Web service based dynamic proxy. The use of this component al-
lows service providers to create, update and change services anytime and mobile
users to locate new services at runtime without adapting the application of their
devices. Section 4 describes our approach and conceptual model to dynamically
discover and invoke Web services from mobile phones. Section 5 illustrates the
implementation and performance of the approach proposed. Comparisons with
common scenarios based on the use of static stubs are performed. Discussion of
the advantages and disadvantages of the use of J2ME as wireless middleware is
included. Section 6 gives concluding remarks and future work.

2. Related Work

This section provides a brief summary of Web services standards related to our
work, scenarios of using Web services in mobile phones, and ongoing specifications
related to it. Discussion on whether it is appropriate to adopt common scenarios
to support services on wired networks in mobile phones is included.

2.1. Web Services Standards

The WS paradigm [6] involves three types of participants: WS provider, WS re-
questor (also referred to as service consumer or client) and WS registry or broker.
The infrastructure necessary to implement a WS based approach requires: a way to
communicate (SOAP) [7], a way to describe services (WSDL) [8], and a name and
directory server to publish and advertise available services (UDDI) [9]. In middle-
ware terms, a service is a procedure, method or object with a published interface
by a service provider that can be invoked by service clients. Using SOAP-based
interaction, the client makes a procedure call that looks like a local call. As a
result, clients can invoke Web services by means of standardized conventions to
convert procedure calls into an XML message, to exchange this message through
HTTP or other protocols, and to turn the XML message back into an actual service

Mobile and Dynamic Web Services 119

invocation. The structure of a SOAP message is influenced by: two different inter-
action styles and encoding rules. Then, four different types of SOAP messages are
possible: RPC/encoded, RPC/literal, document/literal and document/encoded.

WSDL is an XML-based interface definition language. This interface is spec-
ified in terms of methods supported by the Web service. This interface can be
compiled into the appropriate programming language to generate the stubs and
intermediate layers that make calls to the Web services transparent. Invoking Web
services with clients can be carried out by static stubs, dynamic proxies and dy-
namic invocation interface (DII) according to client applications having knowledge
of the WSDL URL at development-time or runtime.

• Static stubs: a procedure call of a client application is an invocation of a
proxy procedure located in a stub appended to the client at compile time.
Then clients invoke methods of a WS directly via the stub.

• Dynamic proxies: the client application calls a remote procedure through a
dynamic proxy that is created at runtime. The dynamic proxy needs to be
re-instated whenever the service endpoint interfaces are changed.

• Dynamic invocation interface (DII): this approach enables dynamic invoca-
tion of Web services without having to know interface details at compile
time.

2.2. Scenarios of using Web services in mobile phones

The possible scenarios of using Web services in mobile phones are [17]: (i) mobile
device acting as WS requestor, (ii) mobile device acting as WS provider and (iii)
a mixed combination of the previous approaches. The approach proposed in this
paper is related to the first scenario.

In the following sections we describe existing and ongoing work related to
the two possible architectural configurations for the first scenario.

2.2.1. WS-aware mobile device. In this architectural configuration, the entity that
plays the role of the WS requestor is the mobile device itself. This device needs
to dispose a WS client application in order to enable the provision of services to
mobile users. It interacts with the service provider and the service broker using
WS-aware protocols over the wireless network (eg., WLAN, GSM/GPRS).

TinyXML [20] can be used to present data and VoiceXML [21] allows user
to listen to data instead of viewing it. Figure 1 illustrates how to access to Web
services functionalities from mobile phones using a WS based service oriented
architecture with static stubs.

2.2.2. WS-agnostic mobile device. This configuration introduces a proxy entity
that plays the role of the mobile device representative in the fixed network in-
frastructure. This scenario is applicable in the case where the mobile user moves
into an unfamiliar environment and obtain services for which it has no previous
knowledge. For example, we could consider a mobile user entering an airport and
obtaining access to services such as flight information, special offers and promo-
tions in the duty free shops, etc. The proxy interacts via WS-aware protocols with

120 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

Figure 1. Mobile phone as a service requestor. The device hosts
WS client code

the service broker and the service provider and returns the results to the mobile
device using WS-agnostic protocols such as WAP/WML, i-Mode/cHTML over a
wireless network [17]. The proxy may also perform various tasks such as conversion
and content adaptation in order to adjust the WS result to different terminal and
network environments.

2.3. Specifications

Two specifications related to implement services in mobile phones are being de-
veloped: (i) OSGi Alliance [2] and Liberty Alliance Project [3]. The OSGi Service
Platform defines a standardized, component oriented, computing environment for
networked services, where software components can be installed, updated or re-
moved. These components are libraries or applications that can dynamically dis-
cover and use other components. The design of this platform is not targeted to
Web services solutions. Therefore, there is ongoing work in order to provide the
OSGi Service Platform as a platform for Web services such is illustrated by Hall
and Cervantes work [4]. On the other hand, the Liberty Alliance Project proposes
a federated network with an authentication mechanism that makes use of a Web
services framework. However, the usage, advantages and disadvantages of dynamic
binding are not mentioned in this specification.

2.4. Discussion

In order to provide an admissible solution to dynamic services from mobile devices,
the following considerations must be taken into account:

• Standard WS infrastructures to support services on wired networks (e-ser-
vices) [5] are not appropriate because they are based on the use of static
stubs. As a result, the slightest change of Web service definition leads to

Mobile and Dynamic Web Services 121

the stub being useless and a generation of a new stub. Also, each WS to
be invoked by a client application requires a stub appended to the client at
compile time. Therefore, in order to support a dynamic infrastructure where
new services can be provided to mobile clients at runtime requires that the
client downloads a new application to its device each time a new service is
provided to the marketplace when a static stub based approach is used.

• The main usage mode of UDDI today is focused on design-time discovery and
not on dynamic binding [5]. That is, users browse or search the content of a
registry for services of interest, read the service descriptions, and subsequently
write clients that can interact with the discovered services.

• The WS-aware mobile device based configuration presents several issues which
come from the fact that mobile devices are characterized by limited resources
such as processing power and memory. Also, CPUs in mobile phones are re-
stricted to handle complex XML parsing and in general to handle the pro-
cessing need of Web services.

• The WS-agnostic mobile device based configuration is characterized by an
increase of the amount of interactions between the mobile device and the
network. Also, at the present time commercial middleware based solutions
make not possible a DII based approach.

• Also, the specifications supporting these scenarios are still or just emerging.

In this context, we propose a framework based on a dynamic proxy entity.
The main contribution of our approach is that we propose the proxy component
as a Web service that makes use of dynamic binding and that act as client over the
network of services and as server to the mobile devices. With this approach, we
compute at runtime WS descriptions from service providers, UDDI registry and
invoke services selected by mobile users using WS technology.

3. Client Applications with J2ME

The Java Platform, Micro Edition (Java ME) provides an environment for ap-
plications running on consumer devices, such as mobile phones. This platform
is divided into configurations, profiles and optional packages. Configurations are
specifications that detail a virtual machine and a set of class libraries which pro-
vide the necessary APIs that can be used with a certain class of device. A profile is
a set of higher-level APIs that further define the application life-cycle model, the
user interface, persistent storage and access to device-specific properties. Optional
packages extend the Java ME platform by adding functionality to Web services.

MIDP profile with CLDC configuration, KVM virtual machine and JSR-172
specification is required as development environment to design mobile client appli-
cations to access to Web services using Java ME. JSR-172 specification provides the
necessary APIs to access from J2ME applications to remote SOAP/XML services
and parsing XML data. This specification provides two optional packages based
on XML: Java API for XML Processing (JAXP) and Java API for XML-based

122 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

Figure 2. Generating the JAX-RPC Stub

RPC (JAX-RPC). JAXP provides the XML parsing functionality to process XML
data received in a mobile phone. JAX-RPC is an implementation of RPC technol-
ogy (Remote Procedure Call), where the client makes a procedure call that looks
like a local call. This call is an invocation of a proxy procedure located in a stub
appended to the client at compile time. Currently, designing client applications
using JSR-172 specification presents the following restrictions:

• There is no support for dynamic proxies or dynamic invocation interface.
That is, the Java ME subset supports only static stubs. The developer is
responsible of generating the stubs using a WSDL-to-Java mapping tool.
Figure 2 illustrates the process. The Sun Java Wireless Toolkit includes a
stub generator. In this context, as many stubs are generated and appended
to the client application as different services are provided to the service client.

• There is only support to the document style of operation with literal use.
• Neither capabilities for standard service registration and discovery nor sup-

port to UDDI 2.0 specification are provided.
• There is no support to the use of a mobile phone as server of Web services.

That is, the JAXP-RPC for Java ME subset does not support the service
endpoint model, only the client service consumer model is supported.

JAX-RPC for Java ME does not support all of the JAX-RPC 1.1 basic types.
For example, there is only partial support for complex value types, and mapping
of floating-point types depends on the Java ME configuration you use.

Mobile and Dynamic Web Services 123

Figure 3. Mobile Web services framework

4. Mobile Web Services Framework

Commercial middleware such as J2ME and basic infrastructures to support WSs
are addressed by employing a static stub approach that guarantees the execution
of WSs in a static environment. However, this middleware platform does not take
into account basic features that characterize today’s mobile phones environments.
In this context, we aim to modify traditional WS SOA based approach to enable
dynamic discovery and invocation for mobile phones. To be precise, we propose:

• To introduce an intermediate entity between service providers and service
clients. This entity consists of a service manager that operates as a dynamic
discovery and invocation (DDI) client of the distributed network of Web ser-
vices offered by the different providers and as server to the mobile phones.
With this approach, we delegate the business logic to service managers, solv-
ing the problems faced by direct access from mobile devices to Web services
and at the same time reducing the number of interactions between mobile
phones and the network.

• An XML based infrastructure as format data exchange with two purposes:
(i) to define a service registry structure to locate services that allows service
providers to create, update and change services at any time and (ii) to es-
tablish the communication between the service manager and mobile phones.
This infrastructure is described in [1].

Figure 3 illustrates the framework proposed. In the following sections, we
describe the components of our approach illustrated in Figure 3, the interactions
among the different components and the UML class diagram for the conceptual
model of the service manager.

124 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

4.1. Service Providers and Service Clients

Service providers are the owners of different enterprises or a single enterprise who
made up the marketplace that offer services. They define descriptions of their
services using WSDL specifications [8].

Service clients are mobile phones-oriented users interested in diverse ser-
vices such as search engine tools, language translation facilities, newspaper re-
ports, weather forecast, airport services, mobile shopping, mobile banking and
m-government services.

4.2. Service Managers

Service managers act as a mediator layer between service providers and mobile
clients. They are responsible for information flow between both components. A
service manager is a Web service entity that uses dynamic binding to compute
service descriptions and dynamic invocation interface (DII) to query for services
to service providers.

With the use of DII, we allow service managers to invoke WS without knowing
their communication interface at compile time. As a result, we obtain several
advantages: (i) invocations of Web services not known prior can be computed
by the service manager (ii) service providers can create, update and change their
services at runtime, (iii) no static stub generated manually for the service manager
at compile time is required and (iv) a single stub appended to the Java ME client
application is required. This appended stub corresponds to the service manager.

According to the structure of marketplace, one or multiple service managers
can be supported. The use of a single service manager involves a centralized mar-
ketplace. If multiple service managers are used, different operators or third parties
can be incorporated at anytime, where each one can support different service
providers. The integration of service managers into a service oriented architecture
leads to mobile client applications to only interact with these components and not
with the different service providers. This way, a single stub corresponding to the
service manager is needed to be appended to the client application and no several
stubs corresponding to the different services available on the marketplace. At the
same time, the interactions between mobile phones and the network are consider-
ably reduced. The conceptual model of a service manager is described in section
4.5.

4.3. UDDI Registry

UDDI service directory can be used by mobile users to locate new services. Dis-
covery is computed at runtime by the service manager, once the user has sent their
request of new services at UDDI registry.

4.4. Interactions

Interactions between service providers and mobile clients using a service manager
consist of the following processes:

Mobile and Dynamic Web Services 125

• Start up: When the service manager starts up, it processes a service registry.
This registry is a structure that enables service providers to store their list of
URL addresses (URI) of accessible services made available. New URI can be
incorporated anytime. The service manager maintains an XML based struc-
ture as registry. Dynamic binding is used by the service manager in order to
obtain the service descriptions at runtime.

• Service delivery descriptions: the description (operations provided, parame-
ter. . .) of available Web services set is sent from service manager to mobile
client according to an XML format.

• Request Service: once mobile clients have received the description of available
services, they send requests for services of their interest.

• Service invocation: service manager receives a request encoded as an XML
message with the necessary information (Web service name, selected opera-
tion, parameter values introduced. . .) from a mobile device when a user is
interested in some service. Dynamic invocation is used by service manager in
order to invoke Web services functionalities to service providers.

• Results transmission: the service manager sends the information encoded
as an XML message to the mobile user, when it receives the response of
the corresponding service provider. This information is shown on the screen
display of the mobile device.

• UDDI services: mobile clients can also demand services supported by UDDI
registry. In this context, a client makes a request to the service manager using
keyword in order to discover a particular service at UDDI registry. Then, the
service manager uses dynamic binding to discover services at UDDI registry
that match with the user search criterion. The description of these services is
sent from the service manager to the mobile application. The user selects the
service of its interest and finally the service manager processes this request at
the same way as the request and invocation of services previously described.

4.5. Conceptual Model of Service Manager

Figure 4 depicts the UML class diagram for the conceptual model of the service
manager. The different classes and relationships are illustrated. Following, the
different classes are described.

The WebService class corresponds to the service manager that processes the
requests of mobile clients. In order to avoid a new creation of instance every
time the user performs an invocation of some operation of this class and reduce
computational costs, two different classes were developed (StandardServices and
UDDIServices). These classes were implemented using a singleton pattern. As a
result, a single instance is present every time. The client application invokes the
corresponding operation according to the selection achieved by the mobile user:

• updateStandardServices: this operation allows mobile users to check the cur-
rent version of downloaded services. If the version of the mobile application
does not correspond to the service manager version, a new version with the

126 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

new services incorporated at runtime is sent to the mobile client in an XML
format.

• invokeStandardService: this operation allows mobile users to invoke any WS
registered at the service registry of the service manager. Input parameters are:
URL address of WSDL file, QName of portType, operation name to invoke
and parameter values of the operation. Once the results of the invocation
of the Web service have been processed by the service manager, this one
transforms these results to an appropriate XML format, which is sent to the
mobile application.

• processUDDISearch: this operation allows mobile users to request a search
at UDDI registry. Once the search is computed by the service manager using
dynamic binding, the results of available services are encoded as an XML
message to the client application.

• computeUDDISearch: once client application receives services located at
UDDI registry as a result of the processUDDISearch operation, the user
selects the appropriate Web service for its interest. The input parameter of
this operation is the service selected. An XML document is generated with
the service description which is sent to the client application.

• invokeUDDIService: with this operation, services searched at UDDI registry
are invoked using dynamic invocation.

The StandardServices class is responsible of the management of all the oper-
ations related to the processing of Web services, such as: computation of the Web
services to offer to mobile clients, making of the XML document to be sent to the
mobile application with the new services incorporated at runtime and invocation
of the operation of a specific WS selected by a mobile user.

The UDDIServices class corresponds to the operations related to Web ser-
vices searched at UDDI registry: Web services list that matches with the search
criterion of the user and invocation of the corresponding operation. The search of
Web services at UDDI registry is computed by locateUDDI method. This method
makes use of the locateUDDIService class that computes the search at UDDI reg-
istry according to the search criterion detailed by the mobile user. After the search
has been performed, services found at UDDI registry are checked in order to detect
inconsistencies.

The ManagerOperations class manages the operations related to Web services
such as operations of incorporation, searching and invocation. The attributes of
this class are the operations set and the dynamicInvoker object. Attribute opera-
tions contains the description of operation of Web services: URL address of WSDL
document, parameters required and description of the operation. The dynamicIn-
voker object is an instance of the class DynamicInvoker.

The DynamicInvoker class is designed with the purpose of achieving the de-
scription of Web services from WSDL files and invocating them at runtime. Apache
Axis [11] is used to implement this class. In order to make dynamic invocation,
we use the call interface provided by Axis. Invocation of an operation implies to

Mobile and Dynamic Web Services 127

generate an instance of this class. With the purpose of reducing computational
costs and avoiding the generation of a new instance with every invocation, we use
a structure with a call instance for every operation created. This way, a single
instance is generated for every operation, using this instance every time that it is
necessary to invoke the same operation.

Following, the parameters of the operation selected must be checked. The
parameters to be processed can basically be simple or complex. However, the call
interface does not provide support to handling complex data type. That is, if
the call object receives as input parameter a complex type, this object has not
the sufficient information to the serialization and deserialization process of this
parameter.

At the present, Axis interface provide the invoke method to compute the
invocation of the service. Once the operation and service to be computed has been
indicated, the method invoke can basically be used by two different ways:

• invoke (Object[] arg0): service invocation is computed by means of the use of
arg0, which represents a set of parameters of the operation to be computed.
Every element of this array is an instance of a Java class that represents every
parameter of the operation.

• invoke (Message arg0): service invocation is computed by a message, which
represents a SOAP message, that is, an XML format with the operation to
be invoked and their parameters.
To handling the complex data types, we use the first option of the invoke

method. However, there is not a representation for a complex data type in a
structure that can be used by the invoke method. Therefore, in this situation,
the service cannot be invoked. To solve this problem, we generate at runtime a
JavaBeans software component that represents each one of the different complex
types that appears on the WSDL files analyzed. As a result, the bean associated
to each complex parameter type allows that the call instance will be able to catch
and modify the fields of the parameter at the invocation time by means of the
instance of Axis BeanSerializerFactory and BeanDeserializerFactory classes.

The BeanJavassistUtils class produces at runtime the beans necessary to
make invocations of operations that contain parameters with complex data types.
In order to produce a class at runtime, we use the class library Javassist (Java
Programming Assistant) [16]. It enables Java programs to generate a new bytecode
at runtime. Makebean method of BeanJavassistUtils class (Figure 4) is responsible
of generating the corresponding beans. It is implemented in a similar way as the
beans are generated by the mapping tools of stubs of Axis.

5. Development and Results

The framework described in section 4, allows mobile users to access to Web services
published at World Wide Web by means of requesting a service manager entity. No
update of client application is required when new services are provided at runtime.

128 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

Figure 4. Class diagram of service manager

The framework has been implemented using the following open source soft-
ware: Apache Tomcat 5.0.28 for application server [15], J2ME Wireless Toolkit
(WTK) [13] for developing wireless applications and designed to run on cell phones,
and Eclipse 3.1 development platform with WTP (Web Tools Platform) plug-in
[14] for building software and developing Web applications. Axis [11] and UDDI4J
[12] Java libraries have been used as SOAP motor and Java implementation of
UDDI protocol. Javassist (Java Programming Assistant) [16] has been used as
a class library for editing bytecodes in Java. It enables to define a new class at
runtime and to modify a class file when the JVM loads it. The client application
has been implemented as a MIDlet using J2ME Wireless Toolkit. That is, a Java
application developed with MIDP profile and CLDC configuration.

In order to test the Web services framework for mobile devices, we have
implemented on mobile phones different scenarios services using a service manager
entity. The following services have been implemented and tested: (1) searching with
Google engine, (2) text translation from one language to another, (3) newspaper
reports from different sources, (4) temperature converser, (5) weather forecast, (6)
calculator operations and (7) dynamic binding with UDDI registry.

We have developed the Java client application and tested it on the Sun em-
ulator. Also, with the purpose of testing correct performance, we have tested the
client application with mobile emulators of commercial trademarks.

5.1. Performance

The core of our framework is the Web service based proxy (service manager). An
important part of this component is the ability of processing requests from mobile
phones. In order to measure and compare the running of our proxy, we compute

Mobile and Dynamic Web Services 129

the performance of the service manager invocating services over the wired network
under two approaches: (i) static stub and (ii) DII.

Different qualities or properties defined by Quality of service (QoS) [24] are
used in order to evaluate the performance of the Web service based proxy from the
perspective of the users of services (in this case, the users with mobile phones).

WSTest [25], a benchmark developed at Sun Microsystems is employed with
the purpose of computing two aspects of QoS. WSTest benchmark simulates a
multi-thread server program that makes multiple Web services calls in parallel.
WSTest reports the Throughput (average number of Web service operations per
second) and the Response Time (average time taken to process a request).

5.1.1. Test Description. With the purpose of computing the performance of the
service manager, we consider the invocation of three operations of a Web service
with the following types of parameters:

• echoVoid: sends and receives an empty message.
• echoStruct: sends and receives an array of size 20, where each element is a

structure composed of one element each of an integer and string data type.
• echoSynthetic: sends and receives a string and a complex parameter (struct).

For the results reported, WSTest was run with the following parameters set,
specified in an initialization file:

• Agents: this is the number of client threads and is set to maximize CPU
utilization and system throughput. The number of concurrent threads is set
to 8.

• Execution time: 300 seconds.
• The same number of calls for each of the 3 types of operations tested.

WSTest was run on the following system configuration:

• Service manager and Web service invoked: Intel Pentium 2GHz. 1GB DDR2,
1 processor.

• Client of service manager: Intel Pentium 2GHz. 512MB DDR2, 1 processor.

5.1.2. Results. The measured throughput and response times were computed for
four different scenarios:

• Static stub: invocation of the Web service from the service manager using a
static stub approach.

• DII1: invocation of the Web service with a standard DDI service manager.
• DII2: invocation of the Web service with a DDI service manager. The first

time the service manager employs standard DII. In the successive times the
service manager computes and caches the call class. This consideration will
allow the invocation for each of the different operations that support the
service. As a result, it will be not necessary to generate the call objects every
time a client of the service manager processes a request of the same Web
service.

130 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

Figure 5. Throughput and average response time for service
manager using three different parameter types (echo, struct and
synthetic) and four different approaches: (1) static stub, (2) stan-
dard DII (DII1), (3) standard DII for the first time and a memory
cache for the successive times (DII2) and (4) DII with a cache
memory (DII3)

• DII3: it is assumed that the service manager has a cache memory with the
call objects.

The graph in Figure 5 shows the performance for each of the four scenarios.
The x-axis indicates the types of parameters such as void, struct and synthetic.
The y-axis in Figure 5.a indicates the throughput, the number of Web service
operations executed per second (higher is better) and the y-axis in Figure 5.b
indicates the response times measured in seconds (lower is better).

In order to compare the results between a static stub approach and a DII
improved approach with cache memory, Figure 6 shows the results performed with
both approaches.

Although a better performance could be supposed with a static stub ap-
proach, a DII approach with cache memory offers better results. Initially, the DDI
service manager client needs an additional cost for discovering the service to be
invoked, for processing the WSDL document, for obtaining the description of the
service and for the generation of the necessary structures for the invocation. This
is illustrated in Figure 5 with the DII1 scenario. However, this computational cost
is only assumed the first time by the service manager for every service invoked.
All the knowledge acquired by means of the use of a cache memory of call ob-
jects is used in successive invocations. With this approach, we compute a better
performance in contrast to a static stub approach (Figure 6).

5.2. Discussion

At present, we found that open source development tools for building, deploying
and testing production quality work well together. Using a dynamic binding based
approach and MIDlets as client applications allows users to download a single time
the application directly to their device over-the-air or via their PC. As a result,
no update of the client application is required when new services are provided.

Mobile and Dynamic Web Services 131

Figure 6. Throughput and average response time for service
manager using three different parameter types (echo, struct and
synthetic) and two approaches: (1) static stub, and (2) DII with
a cache memory (DII)

In order to develop client applications using J2ME middleware platform, we have
found the following drawbacks:

1. The Java Specification Request 172 (JSR-172) required for invocating Web
services from a mobile J2ME application does not support UDDI specification
and SOAP encoded messages.

2. There is only support to static stubs. Therefore, new stubs must be manually
generated when new services are incorporated at runtime and clients need to
download a new application in order to incorporate the new services.

3. Specific implementations must be developed in order to handling complex
data types when dynamic invocation interface is used.
Also, we have found that the use of UDDI registry provides high rate of time

responses and many of the services published at UDDI registry are not correctly
published. Thus, all the services located through UDDI registry must be verified
by the service manager, before the results are sent to the mobile user. However,
these checking operations increase the response time to mobile users.

In order to provide flexibility in an environment with high rate of change
we design a dynamic discovery and invocation (DDI) service manager. We have
found that the use of DII is more complex for the software developer because a
more complex interface is required in relation to the use of static stubs or dy-
namic proxies. We have compared the performance of the service manager under a
static stub and a DII approach. The results show that DII approach offers better
performance than static stub approach when a cache memory is used.

6. Conclusions and Future Work

Standard Web services infrastructures are focused on static stub based invocation
of Web services. However, this scenario is not appropriate for mobile environments,
where services and clients have a high rate of change. In order for Web services to
expand across the mobile phones, users need to be able to efficiently discover and
access to Web services at runtime. In this paper, we address the issues, challenges,

132 Sánchez-Nielsen, Mart́ın-Ruiz and Rodŕıguez-Pedrianes

implementation and performance in the use of dynamic discovery and invocation
of Web services in mobile phones using J2ME middleware platform. We propose
a Web service based proxy that acts as a DDI client over the network of services
and as server to the mobile devices. With this approach, mobile consumers may
locate new services at runtime without updating their client application. Also,
interactions between the mobile phones and the network are reduced. Making DII is
programmatically more complex than using a static stub. However, the advantage
of using DII is to make the code easy to modify if the Web service details change
and/or new services are offered. We have measured the performance using Sun
benchmark with the purpose of comparing Web service proxy performance under
a static stub and a DII approach. The results show that DII approach offers better
throughput and average response time than the static stub approach when a cache
memory is used.

Once we have tested the viability of dynamic mobile services, our future work
will be focused on extending our approach in order to explore other approaches to
handling complex data types based on XML messages when dynamic invocation
is used, to perform more complex services and incorporate semantics, context-
awareness and security aspects.

References

[1] Elena Sánchez-Nielsen, Sandra Mart́ın-Ruiz, Jorge Rodŕıguez-Pedrianes. An open
and dynamical service oriented architecture for supporting mobile services. Proceed-
ings of ACM ICWE 2006, pp. 121-128, Palo Alto, California, July 2006.

[2] OSGi Alliance. http://www.osgi.org/

[3] Liberty Alliance Project. https://www.projectliberty.org/

[4] R.S. Hall and H. Cervantes. Challenges in Building Service-Oriented Applications
for OSGi. IEEE Communications, Volume 42, Number 5, May 2004.

[5] Gustavo A.., Casati, F., Kuno H., Machiraju, V. Web Services: concepts, architec-
tures and applications. Springer-Verlag Publications, Berlin 2004.

[6] Vinoski, S,. Web Services Interactions Models, Part 1: Current Practice. IEEE In-
ternet Computing, 6(3), 2002.

[7] W3C: World Wide Web Consortium. Simple Object Access Protocol (SOAP). http:
//www.w3.org/TR/soap/

[8] W3C: World Wide Web Consortium. Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl

[9] UDDI. Universal Description, Discovery and Integration. http://www.uddi.org/

[10] Java Platform, Micro Edition (Java ME). http://java.sun.com/javame/index.jsp

[11] Apache Axis. http://ws.apache.org/axis

[12] UDDI4j. http://uddi4j.sourceforge.net

[13] Sun Java Wireless Toolkit. http://java.sun.com/products/sjwtoolkit

[14] Eclipse. http://www.eclipse.org

[15] Apache tomcat. http://tomcat.apache.org/index.html

Mobile and Dynamic Web Services 133

[16] Javassist - Java Programming Assistant. http://www.jboss.org/products/javassist

[17] T. Pilioura, A. Tsalgatidou, S. Hadjiefthymiades. Scenarios of using Web Services
in M-Commerce. ACM SIGecom Exchanges, Vol. 3, Number 4, January 2003, pp.
28-36.

[18] V. Sacramento, M. Endler, H. K. Rubinsztejn, L.S. Lima, K. Gonalves, and F.N.
do Nascimento. MoCA: A Middleware for Developing Collaborative Applications for
Mobile Users. IEEE Distributed System Online, 2004.

[19] J. keeney, V. Cahill. Chisel: A Policy-Driven, Context-Aware, Dynamic Adaption
Framework. IEEE 4th International Workshop on Policies for Distributed Systems
and Networks, June 2003.

[20] TinyXML. http://www.grinninglizard.com/tinyxml/

[21] VoiceXML. http://www.w3.org/TR/voicexml20/

[22] Z. Maamar, Q.Z. Sheng and B. Benatallah. On composite Web Services Provisioning
in an Environment of Fixed and Mobile Computing Resources. Information Technol-
ogy and Management 5, 251-279, 2004. Kluwer Academic Publishers.

[23] F. Papadopoulos, A. Zarras, E. Pitoura, P. Vassiliadis. Timely Provisioning of Mobile
Services in Critical Pervasive Environments. Lectren Notes in Computer Sciences
LNCS 3760, pp. 864-881, 2005.

[24] Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, pp.
72-75, December 2002.

[25] WSTest. Sun Microsystems. https://wstest.dev.java.net/

Elena Sánchez-Nielsen
Dpto. E.I.O. y Computación – Escuela Técnica Superior de Ingenieŕıa
Informática, Universidad de La Laguna
38271 La Laguna
Spain
e-mail: enielsen@ull.es

Sandra Mart́ın-Ruiz
Dpto. E.I.O. y Computación – Escuela Técnica Superior de Ingenieŕıa
Informática, Universidad de La Laguna
38271 La Laguna
Spain

Jorge Rodŕıguez-Pedrianes
Dpto. E.I.O. y Computación – Escuela Técnica Superior de Ingenieŕıa
Informática, Universidad de La Laguna
38271 La Laguna
Spain

Whitestein Series in Software Agent Technologies, 135–152
c© 2007 Birkhäuser Verlag Basel/Switzerland

Software Metrics for the Efficient Execution of
Mobile Services

Pablo Rossi and Zahir Tari

Abstract. This paper presents a suite of software code metrics, developed
specifically for service-oriented systems with a well-defined methodology, which
can be used as indicators of runtime efficiency. Existing literature on software
metrics is mainly focused on centralized systems, while work in the area of
distributed systems, particularly in service-oriented systems, is scarce. Firstly,
a critical analysis of the problem domain identifies a number of software at-
tributes which are likely to have an impact on efficiency. Secondly, concrete
metrics are defined and evaluated (theoretically and empirically) for all identi-
fied attributes, with results showing that these software metrics are strongly
correlated to typical efficiency metrics. Finally, a simple algorithm, which
facilitates the runtime adaptation of service-oriented systems via service re-
deployment, illustrates a practical application of the metrics.

1. Introduction

Existing literature on software metrics is mainly focused on centralized systems
(e.g. [1]), while work in the area of distributed systems, particularly in service-
oriented systems, is scarce. Systems with distributed components differ from tra-
ditional non-distributed systems along a number of dimensions including communi-
cation type, referencing/parameter-passing strategies, partial versus total failure,
latency and concurrency [2]. Distributed systems with service-oriented compo-
nents are even more complex, since efficiency and other quality attributes must
be achieved in a typically more heterogeneous networking and execution environ-
ments. Given these differences, this paper argues that it is necessary to extend
established software measurement and related techniques before applying them to
the emerging domain of service-oriented systems (SOS). Note that it has been ar-
gued before, in the domain of web systems, that traditional techniques and metrics
should be re-assessed before being applied to a new domain [3].

136 Rossi and Tari

This work is part of a project whose aim is to design an efficient middleware
infrastructure to support highly adaptable mobile services. This infrastructure
will provide robust and efficient management of business processes across different
enterprises. In this context, adaptation refers to the ability of the software, or
the underlying middleware, to modify its behaviour in response to changes in
the environment. In this project, adaptation can be achieved, among others, via
service mobility, where individual services can migrate through the system nodes.
The decision of when and how service migration should be performed is dependent
on factors such as available resources and the nature of the interaction between
services. As such, this provides a practical application for the metrics proposed in
this paper.

This paper presents a suite of software code metrics that can be used as
indicators of runtime efficiency of service-oriented systems. These metrics were
developed taking into account the particular characteristics of service-oriented
systems (SOS) and following a well-defined methodology. The availability of well-
defined metrics is crucial for middleware infrastructures to make dynamic decisions
at run-time that are objective and robust.

The rest of this paper is organized as follows: Section 2 begins with a review
of related work, with an emphasis on prior studies involving the specification of
metrics for distributed systems. Section 3, through a critical analysis of the prob-
lem domain which provides face validity [4], identifies a number of specific software
attributes that are likely to have an impact on efficiency, with a concrete metric
defined for each. Since theoretical validation of software measures provides sup-
porting evidence as to whether a measure really captures the internal attributes
they purport to measure, metrics are theoretically validated in section 4. Section 5
evaluates empirically the relationships between software and efficiency metrics in
the context of SOS. To illustrate the potential practical applications of the met-
rics, a simple strategy is presented in section 6, with the intention of facilitating
runtime decisions concerning the adaptation of SOS via service mobility. Finally,
section 7 closes with a summary, conclusions and discussion of future work.

2. Related Work

Although many software metrics have been defined for traditional systems [5], a
much smaller number relates to distributed systems in general, and few, if any,
consider the unique characteristics of SOS as is the subject of this paper. This
section provides a review of related work in terms of the measurement of software
attributes of distributed systems.

Shatz [6] proposed a metric for measuring communication complexity in dis-
tributed Ada programs, describing total complexity as the weighted sum of two
components. Firstly, local complexity, which reflects the complexity of the individ-
ual tasks (disregarding their interactions with other tasks), was measured using

Software Metrics for the Efficient Execution of Mobile Services 137

traditional metrics such as lines of code or cyclomatic complexity. Secondly, com-
munication complexity, which reflects the complexity of interactions among tasks,
was derived by representing the programs as Petri nets and measuring the num-
ber of rendezvous which can be executed concurrently at a given point in time.
Neither theoretical/empirical evaluation nor discussion about the practical utility
was presented.

Cheng [7] also proposed a set of complexity metrics for distributed programs.
Like Shatz [6], the metrics were defined based on graph representations for 1) mul-
tiple control flows (non-deterministic parallel control-flow net), 2) multiple data
flows (non-deterministic parallel definition-use net) and 3) various program depen-
dencies (process dependency net). As above, no empirical support was provided,
nor was a discussion of how the metrics could be used within the software engi-
neering process.

Based on the smallest event communication group (SECG) concept, Tsuar
and Horng [8] suggested a metric to quantify the complexity of distributed pro-
grams, which was defined in terms of the number of events of a SECG. Although,
the metric was experimentally evaluated with a moderately complex example, they
were not evaluated theoretically, and it was not made clear how it could be used
by practitioners.

Morasca [9] put forward a set of measures for capturing a number of internal
attributes (namely size, length, complexity, and coupling) of software specifications
written with Petri nets for concurrent systems. These measures were theoretically
evaluated, but empirical evaluation was not provided.

A measurement suite to quantify design attributes of distributed systems
was presented by Rossi and Fernandez [10]. The proposed measures were obtained
from formal models derived from an analysis of the problem domain. Although
these measures were theoretically evaluated, only a small subset was subject to
empirical evaluation [11].

Arguably the closest study to our work are the metrics proposed by Ryan
and Rossi [12], since they were defined and empirically evaluated for distributed
systems with mobile components. However, this work focuses on the specific char-
acteristics of software objects and, as such, may not be directly applicable to
services.

In summary, existing studies suffer at least one of the following shortcomings:
1) metrics are not theoretically or empirically evaluated, 2) metrics have no clear
practical applicability, or 3) metrics do not capture the particular nature of SOS.
Therefore, given these shortcomings, it seems appropriate to develop and evaluate
a new suite of software metrics to support the unique aspects of SOS.

3. Analysis of the Problem Domain

Here we are concerned with the impact of software attributes on the efficient
execution of services in a mobile computing context. For the purpose of this paper,

138 Rossi and Tari

in line with ISO 9126-1 [13], efficiency is considered to be a high-level quality
attribute comprising the attributes performance (or time behaviour) and resource
utilization. Software is considered to be more efficient as performance increases
and resource utilisation decreases. These attributes are quite broad and, as such,
were decomposed into particular sub-attributes of interest:

P1. Service Migration Cost: the cost of moving a service between hosts.
P2. Operation Execution Cost: the processing cost of an operation, ignoring any

overhead associated with its call.
P3. Operation Call Cost: the cost of calling a service operation, independent of

its actual execution.

R1. Memory Utilisation: the current memory usage on a host.
R2. Network Utilisation: the current unavailable network bandwidth of a host.
R3. Processor Utilisation: the current processing load of a host

It should be noted that other resources such as mass-storage capacity and
power consumption are also considered important but due to space constraints
will be studied in future work.

From a critical analysis of the problem domain a number of software at-
tributes were identified that were likely to have an impact on the efficiency of SOS
in a mobile environment. In this context, the size and coupling of a service were
identified as the key software attributes that represent most of the impact on effi-
ciency. As size and coupling are also generic attributes, they were refined to capture
more precisely the specific characteristics of services as software components:

S1. Service Implementation Dimension: the size of the service executable code;
the larger the Service Implementation Dimension, the longer the Service Mi-
gration Time and the higher the Network Utilisation.

S2. Service State Dimension: the size of a service execution state; the larger the
Service State Dimension, the higher the Memory Utilisation.

S3. Operation Interface Dimension: the aggregated size of the parameters of a
service operation interface; the larger the Operation Interface Dimension, the
higher the Operation Call Cost and the higher the Network Utilisation.

S4. Operation Execution Length: the length of a service operation implementa-
tion; the larger the Operation Execution Length, the higher the Operation
Execution Cost and the higher the Processor Utilisation.

C1. Service Collaboration Coupling: a service degree of connection to other ser-
vices; the higher the Service Collaboration Coupling, the higher the Opera-
tion Execution Cost, and the higher the Network Utilisation.

C2. Operation Call Occurrence: the call frequency of a service operation; the
higher the Operation Call Occurrence, the higher the Network Utilisation
and Processor Utilisation.

The model depicted in Figure 1 summarizes the studied relationships between
software and efficiency attributes — additional attributes such as probability of
service execution were identified but considered beyond the scope of this paper.

Software Metrics for the Efficient Execution of Mobile Services 139

Furthermore, the authors identified other potential relationships that are not ex-
pressed explicitly. For example as memory utilisation increases, paging could affect
performance; as processor utilisation increases there will inevitably be an effect on
attributes such as Operation Call Cost. However since these factors were not ex-
pected to have a primary effect, and in the interests of studying a manageable set
of metrics in this paper, the analysis of such attributes and relationships is left to
future work.

The final stage of the analysis process was to derive concrete metrics for each
of the attributes in a form that could be measured at runtime within a middleware
infrastructure. The complete set of metrics and their units of measurement are
listed in Table 1. A formal definition of the metrics is presented in the next section,
while details of how each metrics can be measured in practice can be found in the
appendix.

Figure 1. Summary of the relationships between software and
efficiency attributes for SOS

4. Theoretical Evaluation

Since theoretical validation of software measures provides supporting evidence
as to whether a measure really captures the internal attributes they purport to
measure, we consider this validation as a necessary step before empirical validation
takes place. The distance framework [14] is briefly introduced in sub-section 4.1
and it is then used to define the proposed metrics formally in the following sub-
sections. This framework has been employed to theoretically validate software
measures previously (e.g. [15, 16]).

140 Rossi and Tari

Attribute Metric Unit
S Operation Interface Dimension Operation Interface Size (OIS) byte

Service Implementation Di-
mension

Service Code Size (SCS) byte

Service State Dimension Service State Size (SSS) byte
Operation Execution Length Operation Number of State-

ments (ONS)
int

C Operation Call Occurrence Operation Call Number (OCN) int
Service Collaboration Coupling Collaborator Service Number

(CSN)
int

P Operation Execution Cost Operation Execution Time
(OET)

ms

Operation Call Cost Operation Call Time (OCT) ms
Service Migration Cost Service Migration Time (SMT) ms

RU Memory Utilisation Memory Availability (MA) byte
Network Utilisation Network Availability (NA) byte/s
Processor Utilisation Processor Availability (PA) int/s

Table 1. Attributes of interest and associated metrics

4.1. Distance Framework

The distance-based approach presents a set of measure axioms whose sufficiency
is assured by measurement theory, and a constructive procedure that defines soft-
ware measures satisfying these axioms. These axioms are the metric axioms, used
in Mathematics to define measures, an extension of the notion of distance. This
section summarizes the basic concepts used here to make the paper self-contained.
(For more details refer to the original work [14]). The distance-based measure
construction process consists of five steps:

1. For the set of software entities E and for the internal attribute a, select a
set of software entities M that can be used as measurement abstractions to
emphasise a, and define a function α : E → M .

2. Define a set T of elementary transformation types on M that is construc-
tively and inverse constructively complete to model the conceptual distances
between measurement abstractions.

3. Quantify distances between measurement abstractions defining a metric δ :
M × M → R such that (M , δ) is a metric space.

4. Select a reference model r ∈ M that is the software entity abstraction for
which it holds that for all e ∈ E with α(e) = r, e has the lowest value of a.

5. Define a function µ : E → R such that for all e ∈ E, µ(e) = δ(α(e), r) which
is a measure of distance from α(e) to r.

Software Metrics for the Efficient Execution of Mobile Services 141

4.2. Coupling Metrics

Here we provide the formal definition of CSN that demonstrates its theoretical
validity. OCN was formally defined and validated following an analogous process

Step 1. The set of software entities E is the universe of services (US) that is
relevant for some system domain and S is a service (viz. S ∈ US). The attribute
of interest a is the number of services that collaborate with S via operation calls.
The set of services that collaborate with service S is then a subset of US. All the
sets of services with collaboration coupling within US are elements of the power set
of US, denoted by P(US). Consequently we can associate the set of measurement
abstractions M to P(US) and define the abstraction function αCSN : US →
P (US) as:

∀S ∈ US : αCSN (S) = {R ∈ US|R collaborates with S via an
operation call}

This function maps a service S onto the set of collaborator services that are called
by S.

Step 2. The next step is to model the distance between elements of M . It is
necessary to find a set of elementary transformation types for P(US) such that any
set of services can be transformed into any other set of services by way of a finite
sequence of transformations. Since the elements of P(US) are sets of components,
T must only contain two types of elementary transformation. T = {θCSN1, θCSN2}
where

∀s ∈ P (US) : θCSN1(s) = s ∪ {m} and θCSN2(s) = s − {m}, with
m ∈ US

Given two sets s and s′ of P(US), s can always be transformed into s′ by first
removing all services from s that are not in s′ (through θCSN2) and then adding
all services to s that are in s − s′ (through θCSN1).

Step 3. The distance between two sets of services s and s′ can be measured by the
length of the shortest sequence of elementary transformations taking s to s′. As
exactly one elementary transformation will be needed for each service of US that
is contained in either s or s′, but not in both sets, the distance value is equal to
the cardinality of the symmetric difference between s and s′:

∀s, s′ ∈ P (US) : δCSN (s, s′) = |s − s′| + |s′ − s|

Step 4. The reference abstraction is the empty set of services. It is desirable that
a service S without service collaborations will have the lowest possible value for
the CSN measurement. Hence we define the following function: rCSN : US →
P (US) : S → ∅.

142 Rossi and Tari

Step 5. The number of services called by service S ∈ US, can be formally defined as
the distance between its set of collaborator services and the empty set. Therefore,
formally CSN can be defined as µCSN : P (US) → R:

∀S ∈ US : µCSN (S) = δCSN (αCSN (S), rCSN) = |αCSN (S)∆∅| =
|αCSN (S)|

4.3. Size Metrics

Here we theoretically validate ONS by presenting its formal definition. SCS, SSS
and OIS were formally defined and validated following an analogous process.

Step 1. The set of software entities E is the universe of Operations (UO) that is
relevant for some Service domain and O is an Operation (viz. O ∈ UO). Let UES
be the Universe of Executable Statements relevant to O. The attribute of interest
a is the number of Executable Statements that are part of Operation O. The set
of Executable Statements ES that are part of Operation O is then a subset of
UES. All the sets of Executable Statements that are part of Operations within
UO are elements of the power set of UES, denoted by P(UES). Consequently we
can associate the set of measurement abstractions M to P(UES) and define the
abstraction function αONS : UO → P (UES) as:

∀O ∈ UO : αONS(O) = {ES ∈ UES|ES is part of O}

This function maps an operation O onto its set of Executable Statements.

Step 2. The next step is to model the distance between elements of M . It is nec-
essary to find a set of elementary transformation types for P(UES) such that any
set of Executable Statements can be transformed into any other set of Executable
Statements by way of a finite sequence of transformations. Since the elements of
P(UES) are sets of Executable Statements, T must only contain two types of
elementary transformation. T = {θONS1, θONS2} where:

∀es ∈ P (EUS) : θONS1(es) = es ∪ {m} and θONS2(es) = es − {m},
with m ∈ UES

Given two sets es and es′ of P(UES), es can always be transformed into es′ by first
removing all Executable Statements from es that are not in es′ (through θONS2)
and then adding all Executable Statements to es that are in es′ − es (through
θONS1).

Step 3. The distance between two sets of Executable Statements es and es′ can
be measured by the length of the shortest sequence of elementary transformations
taking es to es′. As exactly one elementary transformation will be needed for each
statement of UES that is contained in either es or es′, but not in both sets, the
distance value is equal to the cardinality of the symmetric difference between es
and es′:

Software Metrics for the Efficient Execution of Mobile Services 143

∀es, es′ ∈ P (UES) : δONS(es, es) = |es∆es′|
Step 4. The empty set of statements is the reference abstraction r. It is desirable
that an Operation O without Executables Statements will have the lowest possible
value for the ONS measurement. Hence we define the following function: rONS :
UO → P (UES) : O → ∅.
Step 5. The number of Executable Statements that are part of Operation O ∈ UO,
can be formally defined as the distance between its set of Executable Statements
and the empty set. Therefore, formally ONS can be defined as µONS : P (UO) →
R:

∀O ∈ UO : µONS(O) = δONS(αONS(O), rONS) =
|αONS(O) − ∅| + |∅ − αONS(O)| = |αONS(O)|

5. Empirical Evaluation

This section provides experimental results to support the relationships between
software and efficiency metrics described in section 3. We have followed some of the
guidelines provided in the literature [17] on how to perform and report controlled
experiments. (Please note that not all available information has been included in
this paper due to space constraints.)

5.1. Definition

Following the GQM template [18], our experiment goal can be summarised as
follows:

analyse SOS software measures,
for the purpose of evaluating,
with respect to their capability of being used as indicators of efficiency,
from the point of view of SOS engineers,
in the context of wireless and mobile environments.

5.2. Planning

In order to evaluate software measurement hypotheses empirically, it is possible
to adopt two main strategies [19]: (a) small-scale controlled experiments, and/or
(b) real-scale industrial case studies. In this case we chose the first alternative,
since it is more suitable to study the phenomena of interest in isolation, without
having to deal with other sources of variation, such as co-existing systems, security
mechanisms, etc. However, we envisage that after several experiments the suite of
measures will be shown to be robust, and we intend to test the measures following
the second strategy.

The hypotheses to be tested were derived from the attribute relationships
discussed in section 3 as part of the analysis of the problem domain. The dependent
(efficiency) and independent (software) variables are quantified by the metrics
shown in Table 1. Details of how each measure was quantified can be found in the
Appendix.

144 Rossi and Tari

For each hypothesis, experimental data was collected using a synthetic Java
system, with the measurement of metrics obtained either through internal instru-
mentation of the code, or from the operating system via a native interface. All
tests were executed in an isolated network using two identical laptops in a client
server configuration via a wireless link.

5.3. Operation

Before the actual experiment, several pilot experiments were run to make sure
that there were no apparent anomalies, and the system behaved in the same way
as before the measurement code was introduced.

The experiment was conducted in the Distributed Computing Research Lab-
oratory of our University. The system was executed on an isolated (54 Mbps) wire-
less network of laptops (Pentium M, 1.6 GHz, 512MB RAM) and running under a
Windows operating system. All computers had the same hardware and software,
and were configured in the same way. Every service was run on a separate laptop
as the only user process, all other processes running were a few system processes
started by default. The execution of the system was initiated and terminated by
the experiment team, which also controlled that in the meantime nobody else had
access to the facilities.

Despite the data being collected reliably and objectively by electronic means,
it was thoroughly inspected to assert that it was consistent. For this purpose we run
the experiment three different times and compared the three data sets obtained.
However, it should be noted that only the first data set was subject to analysis.
Finally, there was no need to discard any data, hence all data collected was used.

5.4. Analysis and Interpretation of the Results

After the execution of the experiment, all the measures were computed electroni-
cally from the recorded data. The empirical data was analysed with the assistance
of the statistical software package SPSS [20], and the obtained results are presented
in the remainder of this section.

5.4.1. Correlation Analysis. Table 2 presents the Pearson correlation coefficients
(significant at the 0.01 level) between the software measures and efficiency mea-
sures.

OET OCT SMT MA PA NA
SCS 0.927 0.928
SSS 0.959
CSN 0.932 0.938
OIS 0.955 0.965
ONS 0.990 0.967
OCN 0.931 0.984

Table 2. Pearson correlation coefficients (N = 100)

Software Metrics for the Efficient Execution of Mobile Services 145

Discussion. The results show that all the associations are statistically significant.
The correlation coefficients are significant, indicating a nontrivial association of the
software measures with the efficiency measures. This suggests that these variables
are candidates for a base regression model to estimate efficiency. Examination of
the coefficients indicates that all software measures are positively correlated to
the efficiency measures — it should be noted that a higher value of OET, OCT or
SMT indicates worse performance.

5.4.2. Univariate Regression Analysis. Here we present the results obtained when
analysing the individual impact of the software measures on efficiency using Or-
dinary Least Squares (OLS) Regression [21]. In general, a multivariate linear re-
gression equation has the following form:

Y = B0 + B1X1 + ... + BnXn (5.1)

where Y is the response variable, and Xi are the explanatory variables. A univari-
ate regression model is a special case of this, where only one explanatory variable
appears. Table 3 presents the unstandardised regression coefficients (Bi), the sta-
tistical significance of Bi (pi), and the goodness-of-fit (R2) of models. Each row
contains the statistics of a different univariate regression model.

Discussion. The results obtained are remarkably consistent. They indicate that all
software measures that we considered in this paper indeed strongly correlate with
efficiency. In the best case, in our context, ONS accounted for 98 percent of the
variation in performance (measured by OET) — each increase of one unit of ONS
increased OET by 16.88 units. In addition, by analysing the trends indicated by
the coefficients, we see that the hypotheses underlying the measures are empirically
supported.

It should be noted the fact that p0 > 0.01 for some models only means that
we cannot really conclude that B0 �= 0, but this does not affect the fact that we
can realistically conclude that it is very unlikely that B1 �= 0, i.e., it is very likely
that the software attribute is correlated to the efficiency attribute.

5.4.3. Validity. Four different threats to the validity of the study were addressed
[17]:

• Conclusion validity. An issue that could affect the statistical validity of this
study is the size of the sample data, which may not be large enough for a
conclusive statistical analysis. We are aware of this, so we do not consider
these results to be final.

• Construct validity. The study was carefully designed, and the design was
piloted several times before actually being run. The efficiency metrics are
obtained from the OS, thus it is assumed they are reliable. The software
metrics used in this study were shown to adequately quantify the attribute
they purport to measure in section 4.

146 Rossi and Tari

X Y B0 B1 p0 p1 R2 N
SCS SMT 22983 3.701 0.000 0.000 0.859 100
SCS NA 74065 2.809 0.000 0.000 0.860 100
SSS MA 0.000 1.044 0.000 0.000 0.920 100
CSN OET 7.214 2.345 0.206 0.000 0.868 100
CSN NA 32516 5311.7 0.159 0.000 0.879 100
OIS OCT 5059 0.436 0.000 0.000 0.912 100
OIS NA -2463.3 2.839 0.764 0.000 0.931 100
ONS OET -44002 16.884 0.081 0.000 0.981 100
ONS PA 10920 65.249 0.530 0.000 0.936 100
OCN NA -288.2 168.239 0.462 0.000 0.968 100
OCN PA 342.1 16.042 0.000 0.000 0.867 100

Table 3. Univariate Regression Models

• Internal validity. The study was highly controlled and monitored, so it is very
unlikely that undetected influences have occurred without our knowledge.
The instrumentation was trustworthy since the data was collected, and the
measures computed, electronically.

• External validity. Although the study is based on a representative case, more
studies are needed using real systems. We are also aware that more experi-
ments with different platforms (e.g. computer and network hardware, oper-
ating systems, etc.) and infrastructure (e.g. middleware type, programming
language) must also be carried out to further generalize these results.

6. Practical Applicability

Software measurement is not merely about defining new metrics, but about build-
ing new theories that can help solve practical problems [22]. As stated previously,
one of the main goals of this research is to provide middleware support enabling
SOS to maintain specified levels of quality, particularly efficiency, in mobile envi-
ronments.

Consequently, this section defines, and provides initial testing for, an adap-
tation approach based on the metrics introduced in section 3. In general, the
practical application of these metrics is within a middleware infrastructure, which
will collect software metrics describing the services that constitute the system, as
well as information about the hosts in which the services are running, and will
make decisions in terms of service (re) location.

The approach to adaptation developed is decentralized and reactive, involving
an individual node making a decision to move one or more services to another
host when either a performance or resource utilisation threshold is met. Other
approaches to adaptation are possible but are outside the scope of this paper

Software Metrics for the Efficient Execution of Mobile Services 147

— for example an alternative approach to adaptation could be centralised and
proactive involving the solution of an optimization model.

A reactive/adaptive decision is typically triggered by the utilisation of a re-
source that at some point in time exceeds a predetermined threshold. The objective
of this adaptation approach is to distribute the utilisation of resources whilst main-
taining (or improving) performance. However, performance and resource utilisation
are attributes that generally conflict with each other and since compromises may
have to be reached; this decision is not trivial even for the simplest scenario of two
services and two machines. A more typical case may involve numerous services
and many nodes, and thus achieving an effective decision requires an appropriate
process.

Therefore, in order to test the ability of the metrics to support such decision
making, whilst yielding a tangible benefit in terms of efficiency, a preliminary em-
pirical study was conducted by implementing a prototype SOS which consists of
five main services executing over Sun System Application Server Platform Edition
9. For the experiment, software and performance metrics were collected directly
via instrumentation in the system code and resource utilisation metrics from the
Windows Performance Monitor via the Java Native Interface (JNI). The experi-
ment was conducted under the same laboratory conditions, using three nodes of
the same specification as described in the previous section.

The adaptation decisions (which determine if and when a given service should
migrate to another host) were calculated and executed offline. Therefore, the in-
tention of this experiment is not to evaluate the efficiency of the metric collection
and adaptation process itself, although this is the subject of ongoing work. Rather,
this experiment aims to demonstrate that the metrics presented herein can support
the effective placement of services to hosts in a SOS, in order to improve efficiency
compared with the baseline case of no adaptation.

At the abstract level, the adaptation approach operates according to algo-
rithm depicted in Listing 4 in which individual nodes move services to other hosts
when some criteria related to efficiency (performance versus resource utilisation)
are met. The algorithm evaluates, based on the metric values, possible migration
options based on the available local mobile services and remote nodes. The algo-
rithm stops when all possible migrations have been evaluated. An explanation of
how the function ’evaluate’ produces its indicators is given in Definition 1.

In the initial state all services (i.e. S1, S2, S3, S4 and S5) were residing on node
1 (N1), where the processor was heavily loaded (PA around 10%), while N2 and
N3 were not loaded at all (PA around 99%). Applying the adaptation algorithm
to SOS resulted in four cases of service migration: S2, S3, S4 and S5 from N1

to N2. The standard deviation of the processor loads was calculated before and
after adaptation. Additionally, response time data was collected for all business
processes with each executed and measured 100 times.

The standard deviation of the processor loads before adaptation was around
57% whereas the standard deviation after adaptation was around 48%. Moreover,
the average process response time after adaptation was 297 ms versus 321 ms

148 Rossi and Tari

maxIndicator = 0, maxService = null, maxNode = null
for each service s in local node do
for each remote node n do
i = evaluate(s, n)
if (i > maxIndicator) then
maxIndicator = i
maxService = s
maxNode = n

end if
end for

end for
if (maxIndicator > 0.5)
move maxService to maxNode

end if

Listing 1. High-level Adaptation Algorithm

before adaptation. Therefore not only did the adaptation algorithm provide better
processor load balance, which was the principal aim of this experiment, but it also
provided superior performance and thus greater efficiency as well. The adaptation
algorithm was initialised with the following parameters: WP = 0, WRU = 1, kRU =
1, maxRU = 100.

Although the presented adaptation algorithm is relatively simple, it illus-
trates the benefits of applying the metrics proposed in this paper to a practical
application. This provides a basis for further large scale studies and the devel-
opment of advanced adaptation approaches. For example, a more sophisticated
approach to adaptation based on these metrics, and a comprehensive evaluation,
can be found in a separate study [23].

7. Concluding Remarks

Having recognized that distributed systems differ from their traditional centralised
counterparts, and that SOS are even more complex, this paper has introduced a
suite of metrics for such systems. These metrics aim at estimating the impact of
software attributes upon efficiency, in terms of performance and resource utilisa-
tion, for SOS operating in mobile environments.

Having defined such metrics from a critical analysis of the problem domain,
a series of hypotheses relating the metrics were proposed, and the metrics were
evaluated theoretically and empirically. With the results demonstrating the strong
correlation between software attributes and efficiency of SOS, an adaptation strat-
egy was developed, in order to illustrate one of the practical applications of the
metrics in the context of middleware infrastructures for SOS.

Software Metrics for the Efficient Execution of Mobile Services 149

There are a number of possible general approaches to decision making based on
multiple attributes, which differ in terms of how they specify criteria for the deci-
sion making process. Since this is a proof-of-concept implementation of adaptation,
we have selected a simple linear additive approach according to the following equa-
tion:

IE = (WRU IRU + WP IP) (6.1)
In order to evaluate such function, and thus produce an overall decision making
indicator of efficiency (IE) that can be used to rank and runtime actions, the level
of satisfaction of the individual indicators (Ii) must be calculated — this is done
by normalising the values to the unitary interval (0 ≤ Ii ≤ 1). Furthermore, the
aggregate decision making function include weights (Wi), to represent the relative
importance of the individual indicators when calculating the decision making indi-
cator IE . A further requirement of the function is that (W1 +W2 + ... + Wm) = 1,
where Wi ≥ 0 for i = 1...m.
Finally, the resource utilisation (IRU) and performance (IP) indicators were cal-
culated as follows:

IP = 0.5 +
0.5 × (difP − kP)

2 × maxP
(6.2)

IRU = 0.5 +
0.5 × (difRU − kRU)

2 × maxRU
(6.3)

difP =

[∑
i=OS

(
OCNi × (ortCi − ortDi)

)] − SMT (6.4)

difRU =
∣∣∣∣raC

rcC
− raD

rcD

∣∣∣∣ −
∣∣∣∣
(

raC + ruS

rcC

)
−

(
raD − ruS

rcD

)∣∣∣∣ (6.5)

where:
• maxP and mRU are maximum values of performance and resource utilisation.
• kP and kRU are threshold parameters which specify the minimum acceptable

value of performance and resource utilisation.
• OS = number of operations of service S.
• orti = OET + OCT (operation response time)
• ruS = the resource usage of service S: nuS = SCS, muS = SSS, or puS =

avg(ONS)
• raC and raD = resource (i.e. network, memory or processor) availability of

the current and destination nodes of the service; ra = NA, MA or PA.
• rcC and rcD = resource (i.e. network, memory or processor) capacity of the

current and destination nodes of the service.

Definition 1. Function Evaluate Description

150 Rossi and Tari

Although this paper has made a significant incursion into an area that is
not yet well understood, there are a number of limitations and opportunities that
remain to be explored in the future which include, but are not limited to:

• Evaluation of the software attributes and their associated metrics against
other quality attributes such as reliability.

• Analysis of additional resources such as mass-storage and power.
• Evaluation of the overhead of the metric collection and the adaptation strat-

egy.

In closing, the present authors believe this paper to be one of the few reported
studies of metrics for distributed software, and the first involving the specific case
of SOS. The results encourage further large-scale studies and which will suggest
modifications to the metrics suite as additional understanding is achieved.

Appendix

The contents of this appendix can be obtained from the authors on request or can
be found online at http://goanna.cs.rmit.edu.au/˜pablo/wewst06/appendix.pdf.

References

[1] Purao, S. and V. Vaishnavi, Product metrics for object-oriented system. ACM Com-
puting Surveys, 2003, 35(2): p. 191-221.

[2] Emmerich, W., Engineering Distributed Objects, 2000: Wiley.

[3] Ruhe, M., R. Jeffery, and I. Wieczorek. Using Web objects for estimating software
development effort for Web applications. Proceedings: Ninth International Software
Metrics Symposium. 2003.

[4] Henderson-Sellers, B., Object-Oriented Metrics: Measures of Complexity. 1996, Up-
per Sadle River, USA: Prentice Hall.

[5] Fenton, N. and S. Pfleeger, Software Metrics: A Rigorous and Practical Approach.
Second ed. 1996, London: International Thompson Computer Press.

[6] Shatz, S., Towards Complexity Metrics for Ada Tasking. IEEE Transactions Software
Engineering, 1988. 14(8): p. 1122-1127.

[7] Cheng, J. Complexity metrics for distributed programs. Proceedings: International
Symposium on Software Reliability Engineering. 1993: IEEE.

[8] Tsuar, W. and S. Horng, A New Generalised Software Complexity Metric for Dis-
tributed Programs. Information and Software Technology, 1998. 40(5-6): p. 259-269.

[9] Morasca, S. Measuring attributes of concurrent software specifications in Petri nets.
Proceedings: Sixth International Software Metrics Symposium. 1999.

[10] Rossi, P. and G. Fernandez. Definition and validation of design metrics for distributed
applications. Proceedings: Ninth International Software Metrics Symposium. 2003.
Sydney: IEEE.

Software Metrics for the Efficient Execution of Mobile Services 151

[11] Rossi, P. and G. Fernandez. Design Measures for Distributed Information Systems:
an Empirical Evaluation. Proceedings: International Workshop on Software Audit
and Metrics (In conjunction with ICEIS). 2004. Porto.

[12] Ryan, C. and P. Rossi. Software, Performance and Resource Utilisation Metrics
for Context Aware Mobile Applications. Proceedings: Proceedings of International
Software Metrics Symposium IEEE Metrics 2005. 2005. Como, Italy.

[13] ISO/IEC, Information Technology - Software Product Quality - Part 1: Quality
Model. 2003, International Standards Organisation: Geneva.

[14] Poels, G. and G. Dedene, Distance-based software measurement: necessary and suf-
ficient properties for software measures. Information and Software Technology, 2000.
42(1).

[15] S. Abrahao, et al. Defining and Validating Metrics for Navigational Models. Pro-
ceedings: Ninth International Software Metrics Symposium. 2003: IEEE.

[16] Marcela, G., M. David, and P. Mario, Defining Metrics for UML Statechart Diagrams
in a Methodological Way, Proceedings: Conceptual Modeling for Novel Application
Domains (LNCS 2814). 2003, Springer. p. 118-128.

[17] Wohlin, C., et al., Experimentation in Software Engineering. 2000: Kluwer.

[18] Basili, V. and D. Rombach, The TAME Project: towards improvement-oriented soft-
ware environments. IEEE Transactions Software Engineering, 1988. 16(6).

[19] Briand, L., S. Morasca, and K. El Emam, Theoretical and Empirical Validation
of Software Product Measures. 1995, International Software Engineering Research
Network.

[20] SPSS, I., SPSS 8.0: User Guide. 1998, Chicago: SPSS Inc.

[21] Freund, R. and W. Wilson, Regression Analysis: Statistical Modeling of a Response
Variable. 1998: Academic Press.

[22] Briand, L.C., S. Morasca, and V.R. Basili, An operational process for goal-driven
definition of measures. Software Engineering, IEEE Transactions on, 2002. 28(12):
p. 1106-1125.

[23] Rossi, P. and Z. Tari. Software Adaptation for Service-Oriented Systems. Proceed-
ings: Middleware for Service Oriented Computing (MW4SOC’06). 2006. Melbourne,
Australia: ACM Press.

152 Rossi and Tari

Acknowledgment

We would like to thank the Australian Research Council (ARC) for supporting this
project. This work is funded under ARC Linkage Project scheme no. LP0455234.

Pablo Rossi
School of Computer Science and IT, RMIT University
GPO Box 2476V
Melbourne, Victoria, 3001
Australia
e-mail: pablo@cs.rmit.edu.au

Zahir Tari
School of Computer Science and IT, RMIT University
GPO Box 2476V
Melbourne, Victoria, 3001
Australia
e-mail: zahirt@cs.rmit.edu.au

Whitestein Series in Software Agent Technologies, 153–165
c© 2007 Birkhäuser Verlag Basel/Switzerland

Dynamically Adapting Clients to Web Services
Changing

Mehdi Ben Hmida, Céline Boutrous Saab, Serge Haddad, Valérie
Monfort and Ricardo Tomaz Ferraz

Abstract. Web Services are the fitted technical solution which provides the
required loose coupling to achieve Service Oriented Architecture (SOA). How-
ever, there is still much to be done in order to increase flexibility and adapt-
ability to SOA-based applications. In previous researches, we proposed ap-
proaches based on Aspect Oriented Programming (AOP) and Process Alge-
bra (PA) to address flexibility and client generation issues in the Web Service
context. In this paper, we extend these works in order to automatically cre-
ate extended BPEL processes and generate clients which dynamically adapt
themselves to the service changing.

Keywords. Service Oriented Architecture (SOA), Web Services (WS), BPEL,
Aspect Oriented Programming (AOP), Process Algebra (PA).

1. Introduction

Web Services (WS) are “self contained, self-describing modular applications that
are published, located, and invoked across the Web” [1]. They are based on a
set of XML [2] standards to make them more portable than previous middleware
technologies [3]. WSs need to be composed to fulfill business requirements. The
Business Process Execution Language for Web Services (BPEL4WS or BPEL) has
been proposed for this purpose and becomes a standard [4]. BPEL supports two
types of business processes:

1. Executable processes specify the exact details of business processes and are
executed by a BPEL engine.

2. Abstract business processes specify the public message exchange between the
client and the service (the interaction protocol).

154 Hmida, Saab, Haddad, Monfort and Ferraz

Web Service technology has to handle the same features as middlewares such
as DCOM [5], J2EE [6] or CORBA [7] already handle. The features, such as secu-
rity, reliability, or transactional mechanisms, can be considered as non-functional
aspects. Obviously, these aspects are crucial for business purposes and we cannot
build any genuine IS without consideration for them.

However, managing these aspects is likely to involve a great loss in interop-
erability and flexibility. This effect has already been experienced with the above
middleware technologies. Mostly, middleware delegates these tasks to the under-
lying platform, hiding these advanced mechanisms from the developer, and then
establishing a solid bond between the application and the platform. Moreover,
WS providers are faced to some important difficulties to change their services be-
haviours because WSs are shared by many clients and a minor change leads to
client execution problems.

In our previous works, we addressed service adaptability and client interac-
tion issues. We proposed an Aspect Oriented Programming (AOP) [8] approach
which aims to change elementary WSs at runtime [10, 9]. We also proposed a Pro-
cess Algebra (PA) approach which solves the interaction problem between BPEL
processes and their clients. In this paper, we extend these works in order to reach
the objectives previously discussed.

This paper is organized as follows: section 2 presents the Aspect Oriented
Programming (AOP) paradigm. Section 3 briefly presents our previous AOP ap-
proach for elementary WSs, then shows its extension to support BPEL processes.
We also present the architecture of our extended BPEL generator tool which in-
tegrates these concepts. Section 4 presents the process algebra formalism which
supports change-prone BPEL processes. This formalism leads us to generate clients
that adapt themselves to the service changes. Section 5 discusses related work. We
conclude and present future works in section 6.

2. Aspect Oriented Programming (AOP)

Many researches [12, 13, 14] consider Aspect Oriented Programming AOP as an
answer to improve WS flexibility. AOP is a paradigm that enables the modular-
ization of crosscutting concerns into single units called aspects, which are modular
units of crosscutting implementation. AOP concepts were formulated by Chris
Maeda and Gregor Kiczales [8].

Crosscutting concerns are requirements that cannot be localized to an indi-
vidual software component and that impact many components. In aspect-speak,
these requirements cut across several components. Aspect-oriented languages such
as AspectJ [15], JBoss AOP [16], AspectWerkz [17], Spring AOP [18], etc. are
implemented over a set of definitions:

1. Joinpoints : They denote the locations in the program that are affected by a
particular crosscutting concern.

2. Pointcuts : They specify a collection of conditional joinpoints.

Dynamically Adapting Clients to Web Services Changing 155

3. Advices : They are codes that are executed before, after or around a joinpoint.
To better clarify, consider the classical example to implement a logging func-

tionality. Logging code is often scattered horizontally across object hierarchies and
has nothing to do with the core functions of the objects it is scattered across. The
same is true for other types of code, such as security, exception handling, and
transparent persistency. This scattered and unrelated code is known as crosscut-
ting code and is the reason for AOP’s existence.

Figure 1. The weaving process

Using Object-Oriented Programming, every time we need to introduce the
logging functionality in an application, the programmer must add the logging code
into the appropriate objects. Using AOP, we can insert the logging code into the
classes that need it with a tool called a weaver. This way, objects can focus on
their core responsibilities. The figure 1 shows the weaving process.

The weaver is in charge for taking the code specified in a traditional (base)
programming language, and the additional code specified in an aspect language,
and merging the two together. The weaver has the task to process aspects and
component code in order to generate the specified behaviour. The weaver inserts
the aspects in the specified joinpoint transversally. The weaving can occur at
compile time (modifying the compiler), load time (modifying the class loader)
or runtime (modifying the interpreter).

3. Adapting BPEL processes

Our previous approach. We developed an AOP-based tool named Aspect Service
Weaver (ASW) [10, 9]. The ASW intercepts the SOAP (Web Service communi-
cation protocol) messages between a client and an elementary WS, then verifies
during the interaction if there is a new behaviour introduced (advice service). We
use the AOP weaving time to add the new behaviour (before, around or after an

156 Hmida, Saab, Haddad, Monfort and Ferraz

activity execution). The advice services are elementary WSs whose references are
registered in a file called “aspect services file descriptor”. The pointcut language is
based on XPath [24]. XPath queries are applied on the service description (WSDL)
to select the set of methods on which the advice services are inserted.
Principles of our current approach. We extend this approach to BPEL processes.
We apply the AOP concepts to BPEL processes in order to automatically generate
extended BPEL processes without touching the base implementation. The new
document is deployed on a standard BPEL engine. It contains the base BPEL
process and the advice services. We apply the AOP concepts on BPEL processes
in the following way:

1. A joinpoint is a simple or structured BPEL activity.
2. The pointcuts are specified on the BPEL document by using XPath.
3. The advice services are BPEL processes implementing the new behaviour.

Figure 2. The extended executable BPEL process.

We also add to the generated process, an advertising activity before each
inserted advice service (figure 2). This activity sends to the client a message called
execute. This message advertises the client about the execution of a new behaviour.
It encapsulates two kinds of information: the identifier of the advice service and
its corresponding interaction protocol. This message is necessary since the new
behaviour can require new information exchange involving messages unexpected
by the client and leading to execution failures. At the client implementation, the
developer has to handle this type of message: he has to extract the interaction
protocol of the advice service and integrate it in its behaviour. This part is detailed
in the next section.

3.1. Extended BPEL generator

These previous concepts are concretized through the architecture of our tool named
extended BPEL generator. The tool contains the following components (figure 3):

Dynamically Adapting Clients to Web Services Changing 157

1. The BPEL weaver
2. The aspect services file descriptor
3. The advice service repository (or the pattern repository) which contains the

services advices present in the system
4. The deployment module which deploys the extended BPEL process executed

by a standard BPEL engine.

Figure 3. The extended BPEL generator.

The BPEL weaver takes as input the base BPEL process and the aspect
services file descriptor. Then, it performs transformations on the base BPEL
process syntactic tree. It inserts the actions of sending execute messages and
the advices services at the selected joinpoints depending on the kind of the ad-
vice service. The figure 4 shows the transformations made on the base process
sequence(receive(ResReq), switch(reply(ResResp), reply(error)) which receives
a ResReq message then replies by a ResResp or error message depending on a
condition (the switch process). In the case of an around advice service (figure 4.d),
the specified joinpoint is replaced by the advice service and the execute message
replying activity, because we consider that the advice service can encapsulate the
joinpoint. In the figure, a triangle represents an advice service and Q its corre-
sponding interaction protocol.

3.2. The extended interaction protocol

The extended executable BPEL process interaction protocol is described by an
extended abstract BPEL process which integrates the sending of execute messages.
The extended interaction protocol is generated from the base BPEL process and
the aspect service file descriptor based on the defined pointcuts and the type of
advices (before, after or around).

158 Hmida, Saab, Haddad, Monfort and Ferraz

Figure 4. Syntactic transformations on the base executable
BPEL process.

Figure 5. Transformations on the syntactic tree of the abstract
BPEL process.

The generation process performs transformations on the base abstract BPEL
process syntactic tree. It inserts the action of sending execute messages in the
selected joinpoints depending on the kind of the advice service (figure 5). The
execute messages contain only the identifier of the advice service id. The interaction
protocol corresponding to that id is sent to the client at runtime.

Dynamically Adapting Clients to Web Services Changing 159

4. Generating dynamic clients

BPEL provides a set of operators describing in a modular way the observable
behaviour of an abstract process. As shown in [20], this kind of process description
is close to the process algebra paradigm illustrated for instance by CCS [21].

However, time is explicitly present in some of the BPEL constructors and
thus the standard process algebra semantics are inappropriate for the description
of such processes. Thus, we defined a new process algebra semantics that associates
a timed automaton (TA) [19] with an abstract process [11]. The theoretical devel-
opments follow these steps: associating operational rules with each abstract BPEL
construct, defining an interaction relation which formalizes the concept of a correct
interaction between two communicating systems (the client and the WS), and de-
signing an algorithm that generates a client automaton which is in an interaction
relation with the WS.

Figure 6. Generic client interpreter.

The client automaton is interpreted by our generic client interpreter (figure
6). Our client downloads the abstract BPEL process from an UDDI registry (step
3) and generates its corresponding TA. Then, based on the TA of the service and
the interaction relation, it generates the client TA if the service is not ambiguous
(step 4). Finally, it executes the client TA (step 5) and displays graphical interfaces
allowing to the human user to enter the message parameters.

4.1. The dynamic client interpreter

In order to communicate with change-prone BPEL processes, we extend the pre-
vious client interpreter. The new client has to achieve the following tasks:

1. When the client receives an execute(id, Q) message, it has to extract the
advice service interaction protocol Q (identified by id) and generates its client
TA.

160 Hmida, Saab, Haddad, Monfort and Ferraz

2. It simultaneously executes the client TAs of the main process and its advice
clients TA.

3. It makes synchronisation between the main client TA and the advice clients
TA on the termination of advices service execution.
Furthermore, the generation module of the dynamic client interpreter also

integrates new operational rules for the sending and receiving processes in order
to handle the execute(id) messages.

4.2. Formalisation steps

In order to formalize BPEL as timed process algebra, we have to define the actions
(alphabet) of the process algebra. The possible actions are message receiving (?m)
and sending (!m), internal actions (τ) (not observable from the client side), raise of
exceptions (e ∈ E), expiration of timeout (to) and the termination of the process
(
√

). We distinguish three kinds of actions: the immediate actions corresponding to
a logical transition (τ, e,

√
), the asynchronous actions where an unknown amount

of time elapses before the occurrence of actions (?m, !m) and the synchronous
actions (to) which occur after a fixed delay.

Now, we present some operational rules and precisely the new rules for the
sending and receiving processes. To see all rules and in particular the handling of
clocks in TA, we refer the reader to[11].

For example, the empty process which represents the process that does noth-
ing can only terminate by executing the

√
action (0 is the null process).

empty
√
−→ 0 (4.1)

For the sending and receiving processes, we define the following rules.

∀m �= execute, ∗o[m] ∗m−−→ empty avec ∗ ∈ {?, !} (4.2)

!o[execute(id)]
!execute(id)−−−−−−−−→ WaitAdvice(id) (4.3)

WaitAdvice(id)
id.

√
−−−→ empty (4.4)

Rule 4.2 states that the process ?o[m] (resp. !o[m]) which corresponds to the
reception of a message of type m (resp. sending of message of type m) executes
the action ?m (resp. the action !m) which corresponds to the message reception
action (resp. the message sending action) and becomes the empty process. In the
case of sending an execute message, the automaton evolves to an intermediary state
named WaitAdvice(id) (rule 4.3). WaitAdvice(id) waits for the termination of the
advice service identified by id. When advice service id terminates, WaitAdvice(id)
state executes id.

√
and becomes empty process (rule 4.4).

The sequential process P ; Q (P and Q are BPEL processes) corresponds to
the execution of the process P followed by the execution of the process Q. It
becomes the process P ′; Q if the process P executes an action a different from
termination action and becomes P ′. If P terminates and Q can execute an action

Dynamically Adapting Clients to Web Services Changing 161

a and becomes Q′, the process P ; Q executes the action a then becomes the process
Q′.

∀a �= √ P
a−→ P ′

P ; Q a−→ P ′; Q
(4.5)

P
√
−→ and Q

a−→ Q′

P ; Q a−→ Q′ (4.6)

Finally, the switch{Pi}i∈I process evaluates an internal condition represented
by τ then becomes the process Pi.

∀ i ∈ I, switch{Pi}i∈I
τ−→ Pi (4.7)

4.3. Execution Scenario

Considering the abstract BPEL process defined in section 2. If we want to add
dynamically an authentication process before the switch process, the extended
abstract BPEL process has to integrate a sending execute(id) message process
before the switch process.

?o[ResReq]; !execute(id); switch(!o[ResResp], !o[error])

Figure 7. Adaptable service and client automata

At the execution, our dynamic client interpreter downloads the extended ab-
stract BPEL specification. Then, it generates the corresponding service TA based

162 Hmida, Saab, Haddad, Monfort and Ferraz

on the operational rules previously defined. Then, based on the service TA and
the interaction relation, our client generates the client TA and begins its interpre-
tation. Figure 7 shows the generation process.

When our client receives an execute(id) message, it extracts the abstract
BPEL advice service process from the message. In our example, the advice ser-
vice is an authentication process of which the abstract BPEL specification is
!o[authDataRequ est] ; ?o[authDataResp] ; P1. This process sends an authen-
tication data request to the client asking for authentication data, receives these
data then performs some actions to authenticate the user. Our client generates the
corresponding advice client automaton, associates with the received id and begins
its execution (Figure 8.(left), states in grey represent the current execution step).

When the advice client id terminates, our client makes synchronisation with
the main client automaton. It deletes the advice client, performs the id.

√
action

and continues the execution of the main client automaton (figure 8.(right)).

Figure 8. Reception of an execute(id, Q) message (left) and the
termination of an advice service (right)

5. Related work

In [12] and [13], the authors define specific AOP languages to add dynamically new
behaviours to BPEL processes. However, neither of these approaches addresses the
client interaction issue. The client has no mean to handle the interactions that can
be added or modified during the process execution.

The Web Service Management Layer (WSML) [14] is an AOP-based platform
for WSs that allows a more loosely coupling between the client and the server

Dynamically Adapting Clients to Web Services Changing 163

sides. WSML handles the dynamic integration of new WSs in client applications
to solve client execution problems. WSML dynamically discovers WSs based on
matching criteria such as: method signature, interaction protocol or quality of
service (QOS) matching. In a complementary way, our work proposes to adapt a
client to a modified WS.

Some proposals have emerged recently to abstractly describe WSs, most of
them are grounded on transition system models (Labelled Transition Systems,
Petri nets, etc.) [26, 27, 28]. These works propose to formally specify composite
WSs and handle the verification and the automatic composition issues. Still, none
of these works propose to formalize the dynamics of SOA architectures and to
handle runtime interaction changes.

6. Conclusion

In this paper, we proposed a solution based on AOP and PA to handle dynamic
changes in the WS context. We extended our previous AOP approach to support
BPEL processes and to handle interaction issues. We also use process algebra
formalism to specify change-prone BPEL processes and generate dynamic clients.

As future works, we want to extend the work to take into account the client
execution context. We also want to formally handle the aspect interactions issue
(aspects applied at the same joinpoint). Finally, we plane to improve the current
ASW prototype as proof-of-concepts.

References

[1] Tidwell, D., Web services - the web’s next revolution. IBM developerWorks (2000).

[2] Extensible Markup Language(XML) 1.0, W3C Recommendation, February (2004).
http://www.w3.org/XML/

[3] Web Services Architecture, W3C Working Draft 14 November 2002. http://www.

w3.org/TR/ws-arch/

[4] Andrews, T. et al., Business process execution language for web services (2003).
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[5] DCOM Architecture, Microsoft Corporation, 1998. http://msdn2.microsoft.com/
en-us/library/ms809311.aspx

[6] Java Platform Enterprise Edition(J2EE), http://java.sun.com/javaee/index.jsp

[7] Object Management Group (OMG), Common Object Request Broker Archi-
tecture (CORBA/IIOP), revision 3.0.3, 2004. http://www.omg.org/technology/

documents/corba_spec_catalog.htm

[8] G. Kiczales et al. , Aspect-Oriented Programming, in proc. of ECOOP’97. LNCS
1241, Springer-Verlag, (1997).

[9] R. Tomaz Ferraz, M. Ben Hmida and V. Monfort. Concrete solutions for web services
adaptability using policies and aspects. The International Journal of Cooperative
Information Systems (IJCIS), 15(3), pp. 415-438, 2006.

164 Hmida, Saab, Haddad, Monfort and Ferraz

[10] M. Ben Hmida, R. Tomaz Ferraz and V. Monfort. Applying AOP concepts to increase
Web Service flexibility. Journal of Digital Information Management (JDIM) 4(1), pp.
37-44, 2006.

[11] S. Haddad, P. Moreaux and S. Rampacek. Client Synthesis for Web Services by
way of a Timed Semantics. ICEIS 2006 8th International Conference on Enterprise
Information Systems, IEEE Computer Society, pp. 19-26, 23-27 Mai 2006, Paphos -
Chypre.

[12] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with ao4bpel.
In ECOWS, volume 3250 of LNCS, pages 168-182, Springer, (2004).

[13] Carine Courbis and Anthony Finkelstein. Weaving aspects into web service orches-
trations. In ICWS, pages 219-226, (2005).

[14] B. Verheecke, M.A. Cibran and V. Jonckers, AOP for Dynamic Configuration and
Management of Web Services, ICWS-Europe, LNCS 2853, pages 137-151, (2003).

[15] R. Laddad, ASPECTJ in Action: Practical Aspect-Oriented Programming, Portland:
Book News, Inc, 2004.

[16] JBoss AOP, http://www.jboss.org

[17] AspectWerkz, http://Aspectwerkz.codehaus.org

[18] Spring AOP platform, http://www.springframework.org/docs/reference/aop.

html

[19] R. ALur and D.L. Dill, ”A theory of Timed Automata”, Theorotical Computer
Science, 126, pp. 193-235, 1994.

[20] Staab, S., van der Aalst, W., Benjamins, V., Sheth, A., Miller, J., Bussler, C., Maed-
che, A., Fensel, D., and Gannon, D. (2003). Web services: Been there, done that?
IEEE Intelligent Systems, 18:72-85.

[21] Milner, R. (1989). Communication and Concurrency. Prentice-Hall, Englewood
Cliffs, NJ, USA.

[22] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, USA.

[23] Bergstra, J. and Klop, J. (1984). Process algebra for synchronous communication.
Information and Control, 60(1- 3):109-137.

[24] XML Path Language (XPath) Ver. 1.0, W3C Recommendation 16 November (1999).
http://www.w3.org/TR/xpath

[25] X. Nicollin and J. Sifakis. The algebra of timed process, ATP: Theory and. applica-
tion. Information and Computation, 114(1):131178, 1994.

[26] R. Hamadi and B. Benatallah, A Petri Net-based Model for Web Service Com-
position, Proceedings of Australasian Database Conference, pp. 191-200, Australia
(2003).

[27] X. Fu, T. Bultan, and J. Su., Analysis of Interacting BPEL Web Services, In Proc.
of WWW’04, pp. 621-630, ACM Press, USA (2004).

[28] A. Ferrara, Web Services: A Process Algebra Approach, Proceedings of the 2nd
International Conference on Service Oriented Computing, ACM Press, pp. 242-251
USA (2004).

Dynamically Adapting Clients to Web Services Changing 165

Mehdi Ben Hmida
LAMSADE-CNRS, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,
Paris 75775 Cedex 16, France
e-mail: mehdi.benhmida@lamsade.dauphine.fr

Céline Boutrous Saab
LAMSADE-CNRS, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,
Paris 75775 Cedex 16, France
e-mail: celine.boutrous-saab@lamsade.dauphine.fr

Serge Haddad
LAMSADE-CNRS, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,
Paris 75775 Cedex 16, France
e-mail: haddad@lamsade.dauphine.fr

Valérie Monfort
LAMSADE-CNRS, Université Paris-Dauphine,
Place du Maréchal de Lattre de Tassigny,
Paris 75775 Cedex 16, France
e-mail: valerie.monfort@univ-paris1.fr

Ricardo Tomaz Ferraz
CRI, Université Paris 1 Sorbonne,
90 rue de Tolbiac,
75013 Paris, France
e-mail: ricardo.ferraz-tomaz@univ-paris1.fr

Whitestein Series in Software Agent Technologies, 167–182
c© 2007 Birkhäuser Verlag Basel/Switzerland

Web Service Standards: Do we need them?

Tosca Lahiri and Mark Woodman

Abstract. There is a three-fold argument that there are too many overlapping
Web service standards, they are not constraining enough and they exhibit too
much proprietary interest. These criticisms suggest a dilemma of whether Web
service standards are worth investing time in – which raises the question of
whether we should use standards or not. This dichotomy raises issues criti-
cal to both software engineering and business. Deciding which standards to
adhere to is difficult from the viewpoints of the software developer and the
perspective of the business arm. We discuss standards’ benefits and downfalls,
looking at the implications for stakeholders. For successful uptake standards
need precision and flexibility in solutions to common development challenges.
Whether there are enough rigorous standards, or whether there are not suffi-
cient robust standards is at the heart of the matter. We will expose different
facets of an argument pointing to a standards marshalling framework for eas-
ier adherence.

Keywords. Web Services. Standards.

1. Introduction

Web services are a maturing design option offering substantial benefits to soft-
ware designers and commercial enterprise process designers alike. Standards for
Web services are developing in such a way that they will form part of the “next-
generation” web [1].

However, in a recent publication Microsoft presented the results of a survey
of senior IT managers in which it emerged that the level of trust in standards
was at the root of any slowness to use Web services [2]. If the use of software-to-
software Web services across business boundaries is to become commonplace then
the standards that govern the transport, storing and handling of data will need
strengthening. We will examine some of the reasons why standards are weak in
later sections.

168 Lahiri and Woodman

1.1. Web Service Definition

It is clear from the relevant literature that the definition of a Web service is still
developing. In our previous work [3] we identified three “schemes” to describe how
Web services are used. In Scheme I the developer of systems that consume Web
services identifies the exact service they want to use before they have designed
their system. Then the developer produces the system to fit the published Web
service. In Scheme II system developers identify sets of Web services that their
system may consume and then develop their software to fit the set of published
Web services. Scheme III is the Web service ideal in which the developer does
not select a Web service for use prior to development and they develop their Web
service consuming system for dynamic discovery.

There is disagreement as to whether Web services are revolutionary or evolu-
tionary; whether Web services are a form of distributed computing or not; whether
Web services are state-less or state-full. Furthermore, there is the question of
whether Web services are just a new means of delivering content or whether their
use will actually change the business processes before, after and during content
delivery.

So, what is a Web service? At the simplest level it is a software facility,
delivered over the Internet, that meets a commercial need.

Web services are used to create systems from independently created and con-
trolled parts that can interoperate according to a variety of standards. The services
adhere to a loosely coupled interoperability model, which means that different sys-
tem parts, whether they are internal business objects or external business entities,
have the flexibility to interact with each other programmatically. The ideal model
is what we termed Scheme III : interoperability at three levels – at a platform
level, an operating system level and the programming language level.

1.2. Standards Definition

In this sub-section we try to capture what people mean when they talk or write
about “standards”. The term is now much more loosely used and encompasses a
multitude of ideas and practices.

There are at least five categories of the notion of a standard: specifications
(which we conflate with de jure standards), de facto standards, proprietary stan-
dards, recommendations, and best practices. A specification is a set of detailed
instructions for a specific activity. SOAP is a specification that details how mes-
sages are transported across applications. De facto standards are not prescribed
but are so commonplace that in reality they are standards. An example of a de
facto standard is Microsoft Word for word processing. Proprietary standards are
vendor-specific conditions for use. Recommendations may be followed if your sit-
uation warrants it. Best practices are guidelines that again may just as well be
ignored as followed.

Web Service Standards: Do we need them? 169

The UK’s standards body, the British Standards Institution (BSI [4]), defines
a standard as a published document that:

... contains a technical specification or other precise criteria de-
signed to be used consistently as a rule, guideline, or definition.

Other similar bodies state something about the process of making a standard, e.g.,
on the need for consensus, the use of science, and the benefit to the community.
For the purposes of this discussion we propose the following definition:

A standard is an established or widely recognized specification or
statement of practice from an organization whose authority and
experience is recognised by the community using the standard.

2. Too Many Overlapping Standards

When a software developer goes to create a system that consumes Web services,
such as that described in our Scheme III, they are faced with a plethora of stan-
dards to choose from. After they have defined the functional requirements, the first
choice to make concerns which standards body they would go to. This choice may
be based on previous experience. The second choice is about the impact caused
on the application architecture. In this section we will discuss some of their over-
lapping standards from the standards organizations, with some comments about
their apparent agenda. We will then discuss the affect on the software architecture
from the viewpoint of the software developer and the business manager. Finally,
we will identify areas that have overlapping standards.

2.1. Standards Organizations

Gordon Bell, states in [5], that “we have far too many standards organizations,
each with its own set of internal conflicts and an often inconsistent set of goals.”
This statement from Bell is worthy of further investigation. How many standard
organizations are there? And what are their motivations? There are the W3C,
OASIS, The Liberty Alliance and the WS-I to name just a few – and to temporarily
ignore long-standing, independent, often government-approved bodies such as ISO,
ANSI, CENELEC, ITU, IEEE.

In its own words, “WS-I is an open industry organization chartered to pro-
mote Web services interoperability across platforms, operating systems, and pro-
gramming languages” [6]. WS-I promotes interoperability by devising profiles which
are collections of standards and specifications.

W3C “develops interoperable technologies (specifications, guidelines, soft-
ware, and tools) to lead the Web to its full potential” [7]. OASIS “is a not-for-
profit, global consortium that drives the development, convergence and adoption
of e-business standards” [8]. The Liberty Alliance Project is a coalition of more
than 150 companies, non-profit and government organizations from around the
globe. The consortium is committed to developing an open standard for federated
network identity that supports all current and emerging network devices [9].

170 Lahiri and Woodman

In short, given how many organizations are making standards in these areas,
if we were to list all the standards organization and their raison d’être we would
have a wide spectrum of beliefs and motivations. This may be the root cause of
why there are too many and overlapping standards.

A survey of Web services standards offered by these four organizations alone
highlights the proliferation of standards. As we discuss later it is difficult some-
times to see where one standard ends and another begins. Examples of overlapping
standards that we will look at in this section are as follows:

• For Orchestration: WS-Choreography and BPEL
• For Business Transactions: WS-Transaction and RosettaNet
• For Reliable messaging: WS-ReliableMessaging and WS-Reliability
• For Registries: ebXML and UDDI

2.2. Repercussions of Overlapping Standards

It has been suggested [10] that there are too many standards in the field of web
services. A situation where we have too many standards has several repercussions
for the software developer and the business manager. If there are two standards for
one issue in Web services the developer has to decide which standard to follow. It
could be that the developer decides not to follow a standard as the existence of two
or more standards for the same issue mean that there is in effect no “standard”.
For business managers, the same dilemma means spending time, and therefore
resources, in the decision making process, because they will have to assess each
standard and decide which one to adhere to, if any.

With the proliferation of Web service standards we have also seen proposed
standards that do not mature into full standard mode. For example, WSCI 1.0
(The Web Service Choreography Interface) is a Note on the W3C web site (dated
2002) but appears to have been superseded by other standards such as the Web
Services Choreography Description Language. The repercussions of this pattern of
development makes developing software more challenging as the developer finds
it hard to decide which standard, or proposed standard, to follow. There is the
instinct to use the newest standard as soon as it has been developed and published.
This need is fraught with dangers to the development life cycle as immature stan-
dards have not had time to cover developmental challenges. The decision point of
when to adhere to a standard or not could either bring financial loss or financial
growth.

This surfeit of Web service standards naturally raises inconsistencies [11],
inconsistencies that can be costly. For example, deciding to use WSCI 1.0 in 2002
would very shortly, when it has been superseded, increase design time, increase
the financial risk and decrease interoperability. Design time is increased because
code would need to be refactored. The financial risk is increased because as an IT
manager you would have to re-allocate resources from one task to the refactoring
task required. Interoperability is decreased because a standard has been removed
from the design. If the standard has not been replaced, or the replacement is

Web Service Standards: Do we need them? 171

significantly different from the original standard, the same level of interoperability
can not be guaranteed.

2.3. Examples of Overlapping Standards

Here we sketch the four areas where there are clearly overlapping standards.

2.3.1. Orchestration. In the area of Web service orchestration there are at least
two standards that assist in the process of coordinating an exchange of information.
The first of these is WS-Choreography. It:

provide[s] an information model that describes the data and the
relationships between them that is needed to define a choreogra-
phy that describes the sequence and conditions in which the data
is exchanged between two or more participants in order to meet
some useful purpose [12].

WS-Choreography is a W3C initiative. At the time of writing, the working
group for this standard is dominated by people from the Oracle Corporation. Does
the presence of Oracle on the Working Group influence the pathway to standard-
ization? This would depend on whether Oracle had any plans for products in this
area. The influence could be a positive one as well as a negative one.

BPEL (Business Process Execution Language) is a XML-based language de-
signed to enable task sharing for a distributed computing environment, across
multiple business boundaries using combinations of Web services. BPEL is an
OASIS initiative and has the support of a wide spectrum of corporations as well
other interested parties like IONA.

WS-Choreography and BPEL both deal with orchestrating data across busi-
ness boundaries. They go about the tasks in different ways yet they share a common
objective – that of enabling data exchange across business boundaries.

As either a software developer or IT manager the choice of which standard
to use for orchestration would mean dissecting WS-Choreography and BPEL in
turn to find the similarities and differences. A rationale would then be developed
to assist with the decision of which standard is most suitable. “Suitability” would
have several criteria by which the underlying principals are formed. These criteria
would fall into two groupings; either technical criteria or commercial criteria. It
would be common practice that both groupings would be considered when trying
to decide which standard to adhere to.

2.3.2. Business Transactions. For business process/transactions there are two over-
lapping standards: WS-Transaction and RosettaNet. WS-Transaction is a collab-
orative piece of work involving IBM, BEA Systems, Microsoft, Arjuna, Hitachi,
and IONA. Three other sub-standards make up WS-Transaction. They are WS-
Coordination, WS-AtomicTransaction and WS-BusinessActivity. WS-Coordination

172 Lahiri and Woodman

creates a context in which software activities take place. It also coordinates the ac-
tions of distributed applications. WS-AtomicTransaction defines the atomic trans-
action coordination type used with the WS-Coordination framework. The WS-
BusinessActivity defines the business activity coordination type used by the parent
standard [13].

RosettaNet provides standards that work on the global supply chain, ad-
dressing the challenges of global networks. RosettaNet provides a language for
doing e-commerce in technology-based industries, or those companies that use
technology for business processes. RosettaNet provides automated trading partner
exchanges which results in considerable financial savings for the partners. The au-
tomation requires that applications have a shared understanding of the business
process involved. RosettaNet provides this understanding via a set of processes
that underlies partner to partner communications [14].

WS-Transaction and RosettaNet both deal with business processes or trans-
actions. Although WS-Transaction may be more generic than RosettaNet both
standards focus on B2B (mainly) business transactions and how and where these
transactions happen.

2.3.3. Reliable Messaging. In the reliability of sending and receiving messages field
we have the WS-ReliableMessaging and WS-Reliability standards. WS-Reliable-
Messaging was co-authored by BEA, IBM, Microsoft and TIBCO before being
submitted to OASIS for fine tuning and a stamp of approval. This standard allows
messages to be delivered irrespective of any system failures. WS-Reliability has
been ratified as a standard by OASIS after being devised initially by Fujitsu,
Hitachi, Oracle, NEC, Sonic Software, and Sun Microsystems in March 2003. It
too guarantees message integrity.

It seems at odds that there should be two “standards” for essentially the same
purpose. However, we can see from the list of authors that each standard comes
with its own perspective. These two standards are competing for dominance.

2.3.4. Registries. In the area of Web service registries we have two standards:
ebXML and UDDI. The UDDI is an attempt to create a platform-independent
framework for discovering businesses and the services that they offer. The definition
from Microsoft Corp. states that the “UDDI (Universal Description Discovery and
Integration) is a public registry, offered at no cost, where one can publish and
inquire about Web Services” [15]. UDDI.ORG, the industry repository for UDDI
information claims that UDDI has the support of “all major platform and software
providers, as well as marketplace operators and e-business leaders”. This is a major
step towards interoperability for businesses worldwide as they attempt to reach
the nirvana of boundary-less business.

The definition given by Sun provides a further insight into the benefits of
fully implementing UDDI:

Web Service Standards: Do we need them? 173

The UDDI specifications define a way to publish and discover in-
formation about Web services. UDDI aims to automate the pro-
cess of publishing your preferred way of doing business, finding
trading partners and have them find you, and interoperate with
these trading partners over the Internet [16].

Sun sees implementation of UDDI as enabling integration between trading
partners. For example, if company A wants to buy product B from company C,
without automated interoperability, company A must blindly proceed through
company C purchasing procedures. With UDDI implementation, company C would
publish these stages for company A to integrate with.

The UDDI specification takes advantage of other standards, such as those
from the W3C and the IETF (Internet Engineering Taskforce), in its own devel-
opment. The standards, such as XML, Hypertext Transfer Protocol (HTTP) and
Domain Name System (DNS), provide well-grounded foundations for the UDDI
itself.

Since UDDI would allow businesses a much deeper level of integration, B2B
e-commerce is sure to benefit when UDDI is fully implemented by all online busi-
nesses. This is perhaps a step too far for some of the ultra competitive software
industry.

The OASIS ebXML (Electronic Business XML) Registry sets out to realize
interoperable registries and repositories, with an interface that allows submission,
query and retrieval on the contents of the registry. ebXML is a set of services that
supports business integration via the sharing of information. Partners find each
other’s services with the use of Collaboration Protocol Profile (CPP). The CPP
tells the partners how to connect with the service; it describes the services on offer
and includes a description of the partner offering the services [17].

The decision of which registry standard to use requires analysis of the benefits
each offers. Both ebXML and UDDI offer registries of business services and explain
how business transactions can take place. ebXML is more directly focused on e-
commerce, which may sway the decision.

There are many other areas that we could have discussed beyond the above
four, such as security. Discussing these four, however, already highlights the basic
premise that having too many standards for the same issue causes technical and
commercial confusion.

3. Standards are not Constraining Enough

We now look at the repercussions of standards that do not constrain sufficiently.
We shall then look at four examples of such standards.

Ambiguity in standards has consequences for the architecture of software in
that interoperability is reduced. Interoperability is based on well-crafted standards.
Standards that allow the software developer leeway to make discretionary decisions

174 Lahiri and Woodman

will mean that the software developed does not interoperate well with other sys-
tems. This indistinctness loosens the hold that a standard has on the software
developed in that the standard does not proscribe a particular course of action.
Whether it is reasonable for standards to be prescriptive is another question that
remains unanswered here. What is sure is that standards that allow discretionary
decision points are not constraining the software developer. This is of importance
when considering the degree of interoperability in a system.

Specifications built on another specification like SOAP for example are in ef-
fect a divergence from the original document [18]. It is another way of saying that
the standard has deficiencies and this is how a particular task should be achieved.
An example of an extension is the SOAP Security Extensions: Digital Signatures
proposal that describes how to digitally sign SOAP messages [19]. Extensions that
address new issues that have arisen since the standard was decreed are accept-
able. Standards that have glaring holes that give rise to an extension, are not
constraining the software developer. Security is an issue that SOAP, for example,
hardly addresses. Security of SOAP messages was an issue while the SOAP spec-
ification was designed, yet those on the W3C Working Group, side-stepped the
issue. The SOAP specification allows for several different security extensions, e.g.,
[20]. Having several extensions for the same issue is no constraint.

The interoperability of a piece of software can be reduced if there is more than
one standard which the software could employ. For example, either the software
designer tries to make the software conform to both standards, or, more likely, the
software does not conform to any standard. Trying to make a piece of software
conform to two standards will inevitably result in situations where for a particular
issue one standard as opposed to the other had to be followed. If for the next issue
that comes along you adhere to the other standard then you cannot claim that
your piece of software is compliant with standard X , because in at least one place
it is compliant with standard Y . If because of the presence of two standards for
the same issue the designer decides that they cannot adhere to any standard, then
interoperability is reduced given that interoperability is driven by conformance
to standards. In this scenario the number of standards available explains why
standards are not constraining enough.

The language of the SOAP specification is riddled with discretionary phrases.
Table 1 highlights this.

CommandWord Occurrences
recommended 8
may 85
optional 9
should 23

Table 1. Discretionary words in SOAP

Web Service Standards: Do we need them? 175

Eric Newcomer supports this analysis [21]:
One problem with the SOAP specification is that it contains lots
of rules that may or may not be enforced. Thus it is very likely
that two conforming SOAP implementations will not implement
the same collection of optional features and thus be incompatible.

The rest of this section will briefly look at a few examples of non-constraining
standards.

In Section 7 of the SOAP Specification, Security Considerations, it says that
“SOAP implementors need to anticipate rogue SOAP applications sending inten-
tionally malicious data to a SOAP node It is strongly recommended that a SOAP
node receiving a SOAP message is capable of evaluating to what level it can trust
the sender of that SOAP message and its contents” [20]. The critical word here is
“recommend”. A recommendation is not the same as saying that you “must” do
something. In this case, the SOAP specification is passing responsibility for assess-
ing and measuring levels of trust to the individual developers. So, SOAP does not
prevent users from ignoring levels of trust when they use the SOAP specification.

In Section 1.3 of the SOAP specification, Relation to Other Specifications,
it says that “a SOAP message is specified as an XML Information Set [XML
InfoSet]. While all SOAP message examples in this document are shown using
XML 1.0 [XML 1.0] syntax, other representations MAY [sic] be used to transmit
SOAP messages between nodes ” [20]. The keyword here is, of course, “MAY”.
Thanks to this discretionary word the SOAP specification allows for an infinite
number of representation systems.

SOAP does not prescribe that an XML Information Set must be used:
SOAP Version 1.2 can be used as the basis for other technologies
that provide richer or more specialized services. To claim confor-
mance with the SOAP Version 1.2 specification, the specifications
and implementations of such technologies must be consistent with
the pertinent mandatory requirements expressed in Part 1 of the
SOAP Version 1.2 specification (this document). Rules for confor-
mance with such new specifications are beyond the scope of the
SOAP Version 1.2 specification; it is recommended that specifica-
tions for such technologies provide the appropriate conformance
rules [20].

The keyword in this instance is “recommend”. What this extract is say-
ing is that the SOAP specification can be used as the basis for other new sub-
specifications. However, this extract is only saying that the new specification should
have its own conformance rules as opposed to must have its own conformance rules.

Section 4.3.3 of the XML Specification, Character Encoding in Entities, says:
It is recommended that character encodings registered (as charsets)
with the Internet Assigned Numbers Authority [IANA-CHARSETS],
other than those just listed, be referred to using their registered
names; other encodings SHOULD use names starting with an

176 Lahiri and Woodman

“x-” prefix. XML processors SHOULD match character encod-
ing names in a case-insensitive way and SHOULD either interpret
an IANA-registered name as the encoding registered at IANA for
that name or treat it as unknown (processors are, of course, not
required to support all IANA-registered encodings) [22].

There are three keywords or phrases in this quotation: recommended, should
(used twice) and not required. In this extract the specification gives guidelines for
the use of character encodings. It suggests that you refer to character encodings
with their registered name. If an encoding does not have a registered name you
ought to use names starting with an “x”. What happens if you do not use the
registered name, or use a name beginning with a letter other than “x”?

In this section we have outlined why we think that Web service standards are
not constraining enough. We have then given four examples where the standards
allow for various interpretations. In the next section we shall look at why we think
that standards are too proprietary and what the ramifications of this are.

4. Standards Are Too Proprietary

The proprietary interest seen in standards is a complex issue, but is one that needs
to be addressed. Due to space limitations, in this section we will restrict ourselves
to an overview of the primary concerns.

When reviewing a standard it is important to consider the list of committee
members to see if there is any unwarranted bias in the resulting standard. Ob-
viously a person will always bring their interests to the negotiating table. There
are the benefits and disadvantages to having vendors on the committees devising
standards.

By the time work on a standard begins there has normally already been peo-
ple developing software in the area. Committee members bring with them industry
experience of the relevant domain – experience that highlights what has happened
while they, or their colleagues, have developed software using technology sets be-
fore they have been verified by a standard organization. This means that, in effect,
for a given area, solutions that have been developed and tested by a few are treated
as well-honed design patterns which feed into the “new” specification.

A different way of characterising the impact of limited industry experience
is to say that the knowledge pool for a standard is shallow. The knowledge of the
new technology is limited within all companies by practical restraints like having
to use only particular toolsets. Another restriction in companies will be the money
that they have to invest in developing new standards for the benefit of others.

We also have to consider the benefits of significant commercial interest from
the industry: a company may support the development of a particular standard
because they have products in a particular field that they want to promote. An
example of this is Microsoft updating its SOAP toolkit to natively support the
SOAP specification. Looking at the SOAP specification one can see that Microsoft

Web Service Standards: Do we need them? 177

make up 40% of the editorial team. This is of benefit to Microsoft in that they
have helped devise the SOAP standard.

Another benefit to having proprietary interest in a standard is that the com-
pany brings the advantage of strategic thinking to the table. Development of strat-
egy in a particular field is important because it brings a systematic plan of action
to achieve particular goals. However, when a particular strategy threatens to over-
whelm the standardization process you can see evidence of proprietary interest.

It is also possible that the existence of several company strategies will stall
the standardization process. There have been disputes about IPR, patents, licenses
and royalties at W3C and OASIS committees for instance. Looking at the IPR
statements for BPEL at OASIS reveals that several parties are making claims of
ownership. For example, IBM state that they have a patent license, Microsoft state
that they have patents pending and BEA “has no patent rights in the technology
described in Business Process Execution Language for Web Services Version 1.1
specification dated 5/5/2003” [23]. Patents give the company some ownership of
the technology and as such will ultimately result in financial gains if the technology
is successful adopted. With this background, standards, like, BPEL, are negatively
influenced by proprietary interests.

Proprietary pursuits in standards are also influenced by the available hard-
ware and software infrastructure. If a company is to help in the advancement of a
new technology they must have to hand the available infrastructure or, they must
have the resources to source it. If enough companies are represented on the stan-
dard’s committee it is possible to have a wide representation of environments. This
would increase the interoperability of the standard once it is published. However,
the reverse is also true; that is, if there is only one or two environments available
the range of interoperability is reduced. For example, if a company like Microsoft
for instance dominate a standard’s committee then the Windows operating system
might focus highly. This might mean that interoperability at an operating system
level diminishes. This is another reason why proprietary interest in standards is
detrimental. Standards that do not cross vendor platforms will also mean that the
technology has a restricted reach.

There is an argument that says that vendors should not write standards as
they lack the input of implementation experience [24]. A committee comprising of
programmers instead vendor managers is likely to have a more detailed experience
of the new technology undergoing standardization. More precise experience, from
vendor-neutral contributors, would result in standards that do not have so much
proprietary bias.

Proprietary interest in standards diminishes interoperability. Why does inter-
operability decrease as proprietor influence increases? We have revealed six factors
for this: proprietary bias for their own products; financial considerations; limited
narrow-base knowledge; in-house commercial strategies drive standards down one
track and not the other; disputes concerning IPR stall roll-out; and infrastructure
limitations bind standards to a limited configuration.

178 Lahiri and Woodman

5. Solution

In this section we highlight the role that standards have in developing web ser-
vices and propose that interoperable Web services are only possible with effective
standards. We assert that standards that should shape interoperability. We will
then come to conclusions that address the question of whether we should adhere
to Web service standards or not. We will draw on these conclusions to devise a
standards framework.

Standards will be at the core of successful, interoperable Web services [25]. At
least we can propose that standards are essential for Web services [26] in that they
become part of any definition. The process of defining and verifying standards in
itself contributes to developing the software architecture it is trying to govern [27],
[26]. When a person thinks of Web services they need to, implicitly or explicitly,
receive and understand the message that they can have confidence in software that
uses Web services. This would reverse the situation explained previously whereby
Microsoft found that the lack of standards hindered the use of Web services. Using
our framework of Web services standards would reinforce Web service architecture,
standards and thus bolster business confidence.

So, what is the impact of well-designed standards for software-discovered and
negotiated use of Web services (what we called Scheme III), in terms of the impact
on themselves and on other entities? What bearing do standards have in the field
of Web services? The first point to consider is the origin of standards. Who are
the stakeholders and what influence do they have on the standards? We have seen
that in some standards organizations there have been a majority of people on
the committee from the same company. This must mean that the agenda of that
company would influence that course of the standard-making process.

The second issue is about the dynamics of standards, both internally and
externally. How do the people on the standard-making committees interact with
each other and with other external influences? For example, each person on a
committee comes with their own set of objectives. These objectives come into play
during the negotiation stage. The external influences, such of proprietary interests,
are harder to identify during the standard-making processes. The political bias of
external influences will colour a standard as it develops.

The third influence on well-designed standards is whether there has been an
inbuilt mechanism to alter the standard after it has been tested and used by several
parties in live implementations. A mechanism should exist that takes feedback
from these test-bed scenarios and feeds it back into the design of the standard. An
effective standard should show the input of implementation experience [24].

Another influence that well-designed standards have is that the time needed
to design a software application decreases. Why is this? Standards provide a
framework in which to design software. For example, the standards focussing on
Web service orchestration and choreography provide an essential part of the soft-
ware architecture in that they say how services will interact with other services.
Time needed to design Web services also decreases because organizations produce

Web Service Standards: Do we need them? 179

standards-compliant tools like WsdlValidator used to validate WSDL 2.0 (this tool
can be found at the W3C website).

STANDARDS

Stakeholders

Proprietary

Interests

Live

Feedback

Dynamics

Design

Time

Quality

Assurance

Use of New

Technology

Commercial

Risks

EXTERNAL FORCES: Identify and Measure INTERNAL OUTCOMES: Identify and Measure

Barriers to

Adoption

Interoperability
Global

Communication

Market

Share

Figure 1. Framework for Developing Web Service Standards

Adherence to Web service standards lowers the risks for developers, for IT
managers, service providers and service consumers alike. For developers there
would be a Web service architecture to follow; for IT managers there should be
a mechanism that tells the IT manager which infrastructure to follow for each
contextual setup; service providers and consumers would have confidence in that
Web services are built on tried and tested standards.

Well-designed standards will encourage use. Increased usage will stimulate
the Web service marketplace. Vendors will have to comply with these standards
if they want to keep and grow their market share. A vendor that can show that
their product adheres to a standard will demonstrate a high degree of rigour.

Web service applications that conform with standards also inherit a quality
assurance banner. A banner that when displayed tells prospective customers that
this solution provider can demonstrate that they have followed an accepted course
of action while developing their software. Quality assurance is a vital weapon in
the marketplace.

Another effect that well-designed standards have is that they create a level
playing field for software developers. The impact of this is bi-fold in that both
the programmer and the IT manager gain credit; credit which stimulates business
growth. The programmer knows that if they conform to the XML standard then a
competitor at the other side of the world, using the same standard, does not have
an advantage in terms of what can be done while staying in the bounds of XML.

180 Lahiri and Woodman

The IT manager knows that they have at their disposal a software application that
complies with XML for instance, across the world.

The software developed in these circumstances is not restricted by geographic
boundaries. Global business based on well-defined Web service standards is a pos-
sibility.

Closely adhering to Web service standards will create an interoperable ar-
chitecture that promotes transactions across different hardware configurations,
different operating systems and different programming languages [28]. XML and
SOAP are standards that are used by software developers to create interoperability
systems.

Effective standards, while not ensuring invulnerable, interoperable web-based
services, are the driving force in the implied campaign for seamless business pro-
cesses.

Figure 1 depicts our framework for developing Web service standards. Each
element in this diagram needs to be identified and measured as way to marshal
any Web service standards. The outcomes, in blue, will increase or decrease ac-
cordingly. For example, the dynamics seen within a standard’s committee need
to be identified and any influence measured. As a result of taking measurements
could mean that the makeup of a group is changed.

6. Conclusion

Web services interoperability needs standards. However, as this paper argues, at
present there are too many overlapping standards, and they are not constraining
enough. Furthermore, there is an excess of proprietary interest.

There are too many overlapping standards because there are too many stan-
dards organizations proposing too many standards. Where there is more than one
standard for the same technical challenge, each standard in turn is weakened. The
result is that, in effect, there is no standard for the challenge. Overlapping stan-
dards also mean that the design time for a piece of software is increased, as are
the financial risks. Interoperability is decreased.

When standards are not constraining enough it means there is uncertainty
about how to address a particular matter. Uncertainty means that two developers
will bring their own interpretations of the subject. This again decreases interop-
erability.

Proprietary interest in standards brings unwarranted bias to the proceedings.
This bias also results in a narrowing of the knowledge pool which is especially
seen when one organization’s strategy dominates the standard. When proprietary
interest permeates a standard interoperability is decreased.

Our solution framework sets out elements that need to be identified and
measured to ensure that interoperability, as well as the other benefits, is boosted.

We need Web service standards. But, as we have argued, developers need
standards without overlap; for simpler software development and more efficient

Web Service Standards: Do we need them? 181

business processes, standards should be more constraining; for similar reasons
proprietary interest must be lessened, ideally to a balance between support and
gain. In this situation, Web service standards are worth investing in as long as
we identify their contributory factors in order to strengthen the technical and
commercial outcomes.

References

[1] H. Zhuge, China’s E-Science Knowledge Grid Environment. IEEE Computer-
Intelligent, January/February 2004, 13–17.

[2] Microsoft. .NET Live: Taking business to the next level, Microsoft UK Pamphlet,
2004.

[3] T. Lahiri, and M. Woodman, Web Service Architectures Need Constraining Stan-
dards: An Agenda for Developing Systems without Client-Side Software Adapters,
Proceedings of the IASTED International Conference on Software Engineering, Inns-
bruck, February 2006, 45–52.

[4] British Standards Institution, What is a standard? London, 2005. http:

//www.bsi-global.com/en/Standards-and-Publications/About-standards/

What-is-a-standard/

[5] G. Bell, A Time and a Place for Standards, Queue, 2 (2004), No. 6, 66–74.

[6] WS-I. WS-I: Web Services Interoperability Organization. WS-I, 2006. http://www.
ws-i.org/

[7] W3C. World Wide Web Consortium. 2006. http://www.w3.org/

[8] OASIS. OASIS. 2006. http://www.oasis-open.org/home/index.php

[9] Liberty Alliance, Liberty Alliance Project, 2006. http://www.projectliberty.org/
index.php

[10] W. van der Aalst, Don’t go with the flow: Web services composition standards ex-
posed. IEEE Intelligent Systems. January–February 2003. http://is.tm.tue.nl/

staff/wvdaalst/publications/p181.pdf

[11] D. Oberle, S. Lamparter, A. Eberhart, and S. Staab, Semantic Management of Web
Services, Proceedings 3rd International Conference on Service-Oriented Computing,
Amsterdam, 2005.

[12] D. Burdett, and N. Kavantzas, WS Choreography Model Overview. W3C, 2004. http:
//www.w3.org/TR/ws-chor-model/

[13] IBM. Web Services Transactions specifications. http://www-128.ibm.com/

developerworks/library/specification/ws-tx/

[14] RosettaNet. RosettaNet: What we do. RosettaNet, 2006. http://portal.

rosettanet.org/cms/sites/RosettaNet/About/What/index.html

[15] Microsoft. UDDI, 2003. http://www.ipade.mx/lib/Glosa/Consulta.asp?Letra=U

[16] S. MacRoibeaird, Universal Description, Discovery & Integration (UDDI). Sun Mi-
crosystems, 2002. http://wwws.sun.com/software/xml/developers/uddi/

[17] OASIS. OASIS/ebXML Registry Services Specification v2.5, 2003. http://www.

oasis-open.org/committees/regrep/documents/2.5/specs/ebrs-2.5.pdf

182 Lahiri and Woodman

[18] J. Albornoz, Finding your way through Web service standards, Part 1: Will my Web
service work with your client? IBM. http://www-106.ibm.com/developerworks/

webservices/library/ws-stand1.html

[19] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, Unrav-
eling the Web services web: an introduction to SOAP, WSDL, and UDDI, Internet
Computing, IEEE, 6 (2002), No. 2, 86–93.

[20] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau, and H.F. Nielsen, SOAP
Version 1.2 Part 1: Messaging Framework. W3C. 2006. http://www.w3.org/TR/

soap12-part1/

[21] E. Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI.
Addison-Wesley, Boston, 2002.

[22] T. Bray. J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Third Edition). W3C, 2004. http://www.w3.org/TR/
REC-xml/

[23] OASIS. OASIS Web Services Business Process Execution Language (WSBPEL) TC.
2006. http://www.oasis-open.org/committees/wsbpel/ipr.php

[24] S. Vinoski, WS-Nonexistent Standards, IEEE Internet Computing, November–
December, 2004, 94–96.

[25] D. Geer, Taking Steps to Secure Web Services, IEEE Computer, October 2003, 14–
16.

[26] T. Pilioura, S. Tsalgatidou, and S. Hadjiefthymiades, Scenarios of Using Web Ser-
vices in M-Commerce, ACM SIGecom Exchanges, 3, No. 4, January 2003, 28–36.

[27] D. Fay, An Architecture for Distributed Applications on the Internet: Overview of
Microsoft’s .NET Platform. Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS ‘03), 2003, 22–26.

[28] S. Baehni, P. T. Eugster, R. Guerraoui, and P. Altherr, Pragmatic Type Interoperabil-
ity, Proceedings.23rd International Conference on Distributed Computing Systems,
404–411, May 2003.

Tosca Lahiri
Middlesex University e-Centre
School of Computing Science
The Burroughs, Hendon, London NW4 4BT
England
e-mail: t.lahiri@mdx.ac.uk

Mark Woodman
Middlesex University e-Centre
School of Computing Science
The Burroughs, Hendon, London NW4 4BT
England
e-mail: m.woodman@mdx.ac.uk

Author Index

Angele, Jürgen 1
Ahrens, Maximilian 47

Ben Hmida, Mehdi 153
Berbner, Rainer 21
Boutrous Saab, Céline 153

Gunarathne, Thilina 3

Haddad, Serge 153
Heckmann, Oliver 21

Kaminski, Halina 33
Kumar, Anushka 3
Kumara, Indika 3

Lahiri, Tosca 167

Mart́ın-Ruiz, Sandra 117
Monfort, Valérie 153

Offermann, Philipp 47

Pelechano, Vicente 65, 83
Perry, Mark 33
Premalal, Dinesh 3

Quintero, Ricardo 65

Repp, Nicolas 21
Rodŕıguez-Pedrianes, Jorge 117
Roman, Dumitru 101
Rossi, Pablo 135
Ruiz, Marta 83

Ŝırbu, Adina 101
Sánchez-Nielsen, Elena 117
Schönherr, Marten 47
Schröpfer, Christian 47
Steinmetz, Ralf 21

Tari, Zahir 135
Toma, Ioan 101
Tomaz Ferraz, Ricardo 153
Torres, Victoria 65

Wijethilake, Tharanga 3
Woodman, Mark 167

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

